Questions   
Sort: 
 #2
avatar+118723 
+5
Apr 2, 2015
 #4
avatar+118723 
+5

This question might be related to the following common coin weighing problem.

 You have 10 coins that look identical, but one is counterfeit.  Using a balance (i.e. where you put coins in pans at both ends of a "see-saw", but can't tell the actual weight) what is the minimum number of weighings required to identify the counterfeit coin (and can you tell if it is heavier or lighter than a genuine coin?)?

 

Thanks Alan,

That sounds like a diistict possibility. 

I guess now we just need and answer. 

--------------------------------------------------------

Энэ асуулт нь дараахь нийтлэг зоос жинтэй асуудалд холбоотой байж болох юм.

  Та ижил харагдах 10 зоос, харин нэг нь хуурамч юм. Тэнцвэрийг ашиглах нь (хэрэв та "-г үзнэ үү харсан" хоёр төгсгөлд баригч нь зоос тавьж, өөрөөр хэлбэл, гэхдээ бодит жин нь хэлж чадахгүй байгаа) (хуурамч зоос тодорхойлох шаардлагатай жинлэлтийн хамгийн бага тоо гэж юу болох бөгөөд та хэрэв хэлж болно энэ нь жинхэнэ зоос илүү хүнд эсвэл хөнгөн байдаг вэ?)?

Баярлалаа Алан,

Энэ нь diistict боломжийг сонсогдож болох юм.

Би одоо бид зүгээр л хэрэгтэй, хариулт бодож байна.

Apr 2, 2015
 #1
avatar+118723 
+10

$$\\log(8x)-log(1+x^{1/2})=2\\\\
log\frac{8x}{1+x^{0.5}}=2\\\\
10^{log\frac{8x}{1+x^{0.5}}}=10^2\\\\
\frac{8x}{1+x^{0.5}}=100\\\\
8x=100(1+x^{0.5})\\\\
0.08x=1+\sqrt{x}\\\\
0.08x-1=\sqrt{x}\\\\
0.0064x^2-0.16x+1=x\\\\
0.0064x^2-1.16x+1=0\\\\$$

 

x is approx  0.866  or  180.384  but these must be checked. :)

 

$${\mathtt{0.006\: \!4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{1.16}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\mathtt{125}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{33}}}}{\mathtt{\,-\,}}{\mathtt{725}}\right)}{{\mathtt{8}}}}\\
{\mathtt{x}} = {\frac{\left({\mathtt{125}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{33}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{725}}\right)}{{\mathtt{8}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{0.866\: \!208\: \!647\: \!843\: \!302\: \!2}}\\
{\mathtt{x}} = {\mathtt{180.383\: \!791\: \!352\: \!156\: \!697\: \!8}}\\
\end{array} \right\}$$

 

log(8x)-log(1+x^1/2)=2

check

$${log}_{10}\left({\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{0.866\: \!208\: \!643}}\right){\mathtt{\,-\,}}{log}_{10}\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{0.866\: \!208\: \!643}}}^{{\mathtt{0.5}}}\right) = {\mathtt{0.554\: \!996\: \!959\: \!640\: \!612\: \!2}}$$

 

$${log}_{10}\left({\mathtt{8}}{\mathtt{\,\times\,}}{\mathtt{180.383\: \!791\: \!352}}\right){\mathtt{\,-\,}}{log}_{10}\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{180.383\: \!791\: \!352}}}^{{\mathtt{0.5}}}\right) = {\mathtt{1.999\: \!999\: \!999\: \!999\: \!798\: \!4}}$$

 

$$So\;\; x\approx 180.184$$

.
Apr 2, 2015

0 Online Users