Questions   
Sort: 
 #1
avatar
+10

$${\mathtt{y}} = {\frac{\left({{\mathtt{e}}}^{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{\left({{\mathtt{e}}}^{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}\right)}}\right)}{\left({{\mathtt{e}}}^{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{\left({{\mathtt{e}}}^{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}\right)}}\right)}}$$

$${\mathtt{y}} = {\frac{\left({\frac{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{{\mathtt{e}}}^{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}}}\right)}{\left({\frac{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{{\mathtt{e}}}^{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}}}\right)}}$$

$${\mathtt{y}} = {\frac{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$

$${\mathtt{y}} = {\frac{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{2}}}{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$

$${\mathtt{y}} = {\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{2}}}{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$

$${\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}} = {\frac{{\mathtt{2}}}{\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$

$$\left(\left({\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}}\right){\mathtt{\,\times\,}}\left({{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}}\right)\right) = {\mathtt{2}}$$

$${{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)}{\mathtt{\,-\,}}{\mathtt{1}} = {\frac{{\mathtt{2}}}{\left({\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$

$${{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)} = {\frac{{\mathtt{2}}}{\left({\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}$$

$${{\mathtt{e}}}^{\left({\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)} = {\frac{\left({\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\left({\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}$$

$${\mathtt{12}}{\mathtt{\,\times\,}}{\mathtt{x}} = {ln}{\left({\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{ln}{\left({\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}$$

$${\mathtt{x}} = {\frac{\left({ln}{\left({\mathtt{y}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{\mathtt{\,\times\,}}{ln}{\left({\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}\right)}{{\mathtt{12}}}}$$

.
Jul 6, 2015
 #1
avatar+130511 
+5

This is a broad topic that obviously can't be covered in a concise answer.  This may get you started:

 

http://www.purplemath.com/modules/index.htm

 

 

{It's a pretty good website......the trig topics are at the bottom.....you can click on the Switch to a listing of the lessons "in order"  hyperlink at the top of the page..... }

 

 

Jul 6, 2015
 #1
avatar+33661 
+10
Jul 6, 2015

1 Online Users