Questions   
Sort: 
 #1
avatar+26402 
+5

Larry has 4-cent stamps and 9-cent stamps, which he can combine to produce various amounts of postage. For example, he can make 40 cents by using four 9-cent stamps and a 4-cent stamp, or by using ten 4-cent stamps. However, there are some amounts of postage he can't make exactly, such as 10 cents. {nl} {nl} What is the largest number of cents that Larry cannot make exactly from a combination of 4- and/or 9-cent stamps? {nl} {nl} Explain how you know your answer is correct. (You should explain two things: why Larry can't make the amount of your answer, and why he can make any bigger amount.)

 

All figures can be divided into 4 groups.

Group 1: 4n

Group 2: 4n+1

Group 3: 4n+2

Group 4: 4n+3

 

With 4-cent stamps we get Group 1. (Beginning with n=1 we have 4, 8, 12, 16, 32, ...)

 

With one 9-cent(4*2+1) we can start Group 2. (Beginning with n=2 we have 9 ) and continuing 4*3 + 1(=13) with one 4-cent, 4*4 + 1(=17) with two 4-cent, 4*5+1(=21) with three 4-cent etc.

 

With two 9-cent(4*4+2) we can start Group 3. (Beginning with n=4 we have 18 ) and continuing 4*5 + 2(=22) with one 4-cent, 4*6 + 2(=26) with two 4-cent, 4*7+2 (=30) with three 4-cent etc.

 

With three 9-cent(4*6+3) we can start Group 4. (Beginning with n=6 we have 27 ) and continuing 4*7 + 3(=31) with one 4-cent, 4*8 + 3(=35) with two 4-cent, 4*9+3 (=39) with three 4-cent etc.

 

\(\begin{array}{|r|r|r|r|r|} \hline \text{All Numbers} \\ \hline \text{Group 1} &\text{Group 2} &\text{Group 3} &\text{Group 4} \\ 4n+1 & 4n+2 & 4n+3 & 4n \\ \hline 1 & 2 & 3 & 4\checkmark \\ & & & & +4 \\ 5 & 6 & 7 & 8\checkmark \\ & & & & +4 \\ 9\checkmark & 10 & 11 & 12\checkmark \\ & & & & +4 \\ 13\checkmark & 14 & 15 & 16\checkmark \\ & & & & +4 \\ 17\checkmark & 18\checkmark & 19 & 20\checkmark \\ & & & & +4 \\ 21\checkmark & 22\checkmark & {\color{red}23} & 24\checkmark \\ & & & & +4 \\ 25\checkmark & 26\checkmark & 27\checkmark & 28\checkmark \\ & & & & +4 \\ 29\checkmark & 30\checkmark & 31\checkmark & 32\checkmark \\ & & & & +4 \\ 33\checkmark & 34\checkmark & 35\checkmark & 36\checkmark \\ & & & & +4 \\ 37\checkmark & 38\checkmark & 29\checkmark & 40\checkmark \\ & & & & +4 \\ \dots\checkmark & \dots\checkmark & \dots\checkmark & \dots\checkmark \\ \hline \end{array}\)

 

the largest number of cents that Larry cannot make exactly from a combination of 4- and/or 9-cent stamps is 23.

 

laugh

May 27, 2016
 #2
avatar+26402 
+2

In the sequence 
1,2,2,4,8,32,256,... 
each term (starting from the third term) is the product of the two terms before it. For example, the seventh term is 256, which is the product of the fifth term (8) and the sixth term (32). 

This sequence can be continued forever, though the numbers very quickly grow enormous! (For example, the 14th term is close to some estimates of the number of particles in the observable universe.) 

What is the last digit of the 35th term of the sequence?

 

\(\begin{array}{lcrclclcl} a_1 &=& 1\\ a_2 &=& 2\\ a_3 &=& 2\\ a_4 &=& 4\\ a_5 &=& 8 \\ a_6 &=& 32 &=& 2^{1\cdot 2 + 1\cdot 3} &=& 2^{1\cdot 5 + 0\cdot 3} &=& 2^{5\cdot f_1 + 3\cdot f_0}\\ a_7 &=& 256 &=& 2^{1\cdot 2 + 2\cdot 3} &=& 2^{1\cdot 5 + 1\cdot 3} &=& 2^{5\cdot f_2 + 3\cdot f_1}\\ a_8 &=& 8192 &=& 2^{2\cdot 2 + 3\cdot 3} &=& 2^{2\cdot 5 + 1\cdot 3} &=& 2^{5\cdot f_3 + 3\cdot f_2}\\ a_9 &=& &=& 2^{3\cdot 2 + 5\cdot 3} &=& 2^{3\cdot 5 + 2\cdot 3} &=& 2^{5\cdot f_4 + 3\cdot f_3}\\ a_{10} &=& &=& 2^{5\cdot 2 + 8\cdot 3} &=& 2^{5\cdot 5 + 3\cdot 3} &=& 2^{5\cdot f_5 + 3\cdot f_4}\\ a_{11} &=& &=& 2^{8\cdot 2 + 13\cdot 3} &=& 2^{8\cdot 5 + 5\cdot 3} &=& 2^{5\cdot f_6 + 3\cdot f_5}\\ a_{12} &=& &=& 2^{13\cdot 2 + 21\cdot 3} &=& 2^{13\cdot 5 + 8\cdot 3} &=& 2^{5\cdot f_7 + 3\cdot f_6}\\ a_{13} &=& &=& 2^{21\cdot 2 + 34\cdot 3} &=& 2^{21\cdot 5 + 13\cdot 3} &=& 2^{5\cdot f_8 + 3\cdot f_7}\\ a_{14} &=& &=& 2^{34\cdot 2 + 55\cdot 3} &=& 2^{34\cdot 5 + 21\cdot 3} &=& 2^{5\cdot f_9 + 3\cdot f_8}\\ a_{15} &=& &=& 2^{55\cdot 2 + 89\cdot 3} &=& 2^{55\cdot 5 + 34\cdot 3} &=& 2^{5\cdot f_{10} + 3\cdot f_9}\\ a_{16} &=& &=& &=& 2^{89\cdot 5 + 55\cdot 3} &=& 2^{5\cdot f_{11} + 3\cdot f_{10}}\\ \dots \\ a_{35} &=& &=& &=& &=& 2^{5\cdot f_{30} + 3\cdot f_{29}} \end{array}\)

 

 

Fibonacci numbers: \(f_n = f_{n-1} + f_{n-2} \text{ with } f_0 = 0 \text{ and } f_1 = 1.\)

\(\begin{array}{lcllcllcl} f_{0} &=& 0, \quad & \quad f_{1} &=& 1,\quad & \quad f_{2} &=& 1, \quad & \quad f_{3} &=& 2, \\ f_{4} &=& 3, \quad & \quad f_{5} &=& 5, \quad & \quad f_{6} &=& 8, \quad & \quad f_{7} &=& 13, \\ f_{8} &=& 21, \quad & \quad f_{9} &=& 34, \quad & \quad f_{10} &=& 55, \quad & \quad f_{11} &=& 89, \\ f_{12} &=& 144, \quad & \quad f_{13} &=& 233, \quad & \quad f_{14} &=& 377, \quad & \quad f_{15} &=& 610, \\ f_{16} &=& 987, \quad & \quad f_{17} &=& 1597, \quad & \quad f_{18} &=& 2584, \quad & \quad f_{19} &=& 4181, \\ f_{20} &=& 6765, \quad & \quad f_{21} &=& 10946, \quad & \quad f_{22} &=& 17711, \quad & \quad f_{23} &=& 28657, \\ f_{24} &=& 46368, \quad & \quad f_{25} &=& 75025, \quad & \quad f_{26} &=& 121393, \quad & \quad f_{27} &=& 196418, \\ f_{28} &=& 317811, \quad & \quad f_{29} &=& 514229, \quad & \quad f_{30} &=& 832040, \quad & \quad f_{31} &=& 1346269,\\ f_{32} &=& 2178309, \quad & \quad f_{33} &=& 3524578, \quad & \quad f_{34} &=& 5702887, \quad & \quad f_{35} &=& 9227465, \\ f_{36} &=& 14930352, \quad & \quad f_{37} &=& 24157817, \quad & \quad f_{38} &=& 39088169, \quad & \quad \dots \end{array} \)

 

\(\begin{array}{rcll} a_{35} &=& 2^{5\cdot f_{30} + 3\cdot f_{29}} \qquad & | \qquad f_{30} &=& 832040 \qquad f_{29} &=& 514229 \\\\ a_{35} &=& 2^{5\cdot 832040 + 3\cdot 514229} \\ a_{35} &=& 2^{5702887} \\ \end{array}\)

 

What is the last digit of the 35th term of the sequence ?

\(\begin{array}{rcll} 2^{5702887} \pmod {10 } = \ ? \end{array}\)

 

\(\boxed{~ \begin{array}{rcll} 2^{33} & \equiv & 2^1 \pmod {10}\\ \Rightarrow 2^{33\cdot 33} & \equiv & (2^{33})^{33} \equiv (2^1)^{33} \equiv 2^1 \pmod {10}\\ \Rightarrow 2^{(33^n)} & \equiv & 2^1 \pmod {10}\\ \Rightarrow 2^{a\cdot(33^n)} & \equiv & 2^a \pmod {10}\\ \end{array} ~} \)

 

\(\begin{array}{rclcrcr} \frac{5702887}{33^4} &=& \frac{5702887}{1185921} &=& 4 &\text{ remainder }& 959203 \\ \frac{959203}{33^3} &=& \frac{5702887}{35937} &=& 26 &\text{ remainder }& 24841 \\ \frac{24841}{33^2} &=& \frac{5702887}{1089} &=& 22 &\text{ remainder }& 883 \\ \frac{883}{33} && &=& 26 &\text{ remainder }& 25 \end{array}\\ \begin{array}{rclcrcr} 5702887 &=& 4\cdot 33^4 + 26\cdot 33^3 + 22\cdot 33^2 + 26\cdot 33 + 25 \\\\ && 2^{5702887} \pmod {10 } \\ &=& 2^{4\cdot 33^4 + 26\cdot 33^3 + 22\cdot 33^2 + 26\cdot 33 + 25 } \pmod {10 } \\ &=& 2^{4\cdot 1 + 26\cdot 1 + 22\cdot 1 + 26\cdot 1 + 25 } \pmod {10 } \\ &=& 2^{4 + 26 + 22 + 26 + 25 } \pmod { 10 } \\ &=& 2^{103 } \pmod { 10 } \\ &=& 2^{33\cdot 3 + 4 } \pmod { 10 } \\ &=& 2^{1 \cdot 3 + 4 } \pmod { 10 } \\ &=& 2^{3 + 4 } \pmod { 10 } \\ &=& 2^{7 } \pmod { 10 } \\ &=& 128 \pmod { 10 } \\ &=& 8 \pmod { 10 } \end{array}\)


the last digit of the 35th term of the sequence is 8

 

laugh

May 27, 2016

1 Online Users

avatar