Questions   
Sort: 
 #5
avatar
0
Feb 15, 2017
 #2
avatar
0
Feb 15, 2017
 #1
avatar
0
Feb 15, 2017
 #1
avatar
0
Feb 15, 2017
 #1
avatar+118658 
0

Hi HSC

That is because this integral does not converge.

 

\(\int_{2}^{\infty} \frac{1}{2n-1}dn\\ =\left[\frac{ln(2n-1)}{2}\right]_2^\infty\\ =\left[\frac{ln(2n-1)}{2}\right]_2^\infty\\ =\infty-\frac{ln3}{2}\\ =\infty\)

 

back up by wolfram|alpha

https://www.wolframalpha.com/input/?i=integra+of+1%2F(2x-1)dx+from+x%3D2+to+x%3Dinfty

 

I was surprised by this because here is the graph...

 

The area of the green section represents the integral.... it looks like it converges doesn't it....

 

Maybe Heureka or Alan or some other person might like to comment ://

 

Feb 15, 2017
 #5
avatar+26388 
+10

What is the remainder of: 13^1031 mod 599 =? Thanks for help.

 

Fermat's little theorem states that if p is a prime number, then for any integer a,

\({\displaystyle a^{p}\equiv a{\pmod {p}}}\)

 

If a is not divisible by p, Fermat's little theorem is equivalent

\( {\displaystyle a^{p-1}\equiv 1{\pmod {p}}}\)

 

see: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

 

Let p = 599 (prime number)

Let a = 13 (prime number)

gcd(13,599) = 1 ! so 13 and 599 are relatively prime, we can use Fermat's little theorem.

 

\(\begin{array}{|rcll|} \hline a^{p-1} &\equiv& 1{\pmod {p}} \\ 13^{599-1} &\equiv& 1{\pmod {599}} \\ 13^{598} &\equiv& 1{\pmod {599}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline && 13^{1031} \pmod{599} \\ &\equiv & 13^{598+433} \pmod{599} \\ &\equiv & 13^{598}\cdot 13^{433} \pmod{599} \quad & | \quad 13^{598} \pmod{599} = 1 \\ &\equiv & 1\cdot 13^{433} \pmod{599} \\ &\equiv & 13^{433} \pmod{599} \\ &\equiv & 13^{8\cdot 54 + 1} \pmod{599} \\ &\equiv & (13^{8})^{54}\cdot 13 \pmod{599} \quad & | \quad 13^8 \pmod{599} = 541 \\ &\equiv & 541^{54}\cdot 13 \pmod{599} \\ &\equiv & 541^{3\cdot 18 }\cdot 13 \pmod{599} \\ &\equiv & (541^{3})^{18}\cdot 13 \pmod{599} \quad & | \quad 541^3 \pmod{599} = 162 \\ &\equiv & 162^{18}\cdot 13 \pmod{599} \\ &\equiv & 162^{3\cdot 6}\cdot 13 \pmod{599} \\ &\equiv & (162^{3})^{6}\cdot 13 \pmod{599} \quad & | \quad 162^3 \pmod{599} = 425 \\ &\equiv & 425^{6}\cdot 13 \pmod{599} \\ &\equiv & 425^{3\cdot 2}\cdot 13 \pmod{599}\\ &\equiv & (425^{3})^{2}\cdot 13 \pmod{599} \quad & | \quad 425^3 \pmod{599} = 181 \\ &\equiv & 181^{2}\cdot 13 \pmod{599} \\ &\equiv & 425893 \pmod{599} \\ &\equiv & 4 \pmod{599} \\ \hline \end{array}\)

 

laugh

Feb 15, 2017

0 Online Users