Questions   
Sort: 
 #7
avatar+26400 
+6

$${\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{20}}}{{\mathtt{15}}}}\right)}}{{\mathtt{360}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{15}}}{{\mathtt{20}}}}\right)}}{{\mathtt{360}}}}{\mathtt{\,-\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{20}} = {\mathtt{166.041\: \!867\: \!567\: \!676\: \!442}}$$

 

$$\tan^{-1} ( \frac{15}{20} )
= \tan^{-1}( \frac {1}{\frac{20}{15}} )
=\cot^{-1} ( \frac{20}{15} )
=\frac{180}{2}-\tan^{-1} ( \frac{20}{15} )\\
\Rightarrow$$

 

$$\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{20}}}{{\mathtt{15}}}}\right)}{\mathtt{\,\times\,}}\left({\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{15}}{\mathtt{\,-\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{20}}\right){\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{20}}\right)}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{20}} = {\mathtt{166.041\: \!867\: \!567\: \!676\: \!442}}$$

.
Jun 19, 2014
 #147
avatar+346 
+3
Jun 19, 2014
 #145
avatar+346 
+3
Jun 19, 2014
 #142
avatar+405 
+3
Jun 19, 2014
 #139
avatar+2354 
+3
Jun 19, 2014
 #137
avatar+346 
0
Jun 19, 2014
 #136
avatar+2354 
0
Jun 19, 2014
 #134
avatar+346 
0
Jun 19, 2014
 #132
avatar+2354 
0
Jun 19, 2014
 #131
avatar+405 
0
Jun 19, 2014
 #130
avatar+346 
0
Jun 19, 2014
 #129
avatar+2354 
0
Jun 19, 2014

0 Online Users