Questions   
Sort: 
 #2
avatar+9481 
+2

1)   We want the ratio of width to height to be the same. If we multiply the height by 2, we must

      multiply the width by 2. If we multiply the height by  x , we must multiply the width by  x .

      The number that we multiply the height and width by is the scale factor.

 

\(\frac{\text{old width}}{\text{old height}}\,=\,\frac{\text{new width}}{\text{new height}} \\~\\ \frac{10}{8}\,=\,\frac{\text{new width}}{3.5} \\~\\ 3.5\,*\,\frac{10}{8}\,=\,\text{new width} \\~\\ 4.375\,=\,\text{new width, in inches}\)          Plug in the information from the problem.

 

--------------------

 

2)   This is done the same as the last question.

 

\(\frac{\text{old width}}{\text{old height}}=\frac{\text{new width}}{\text{new height}} \)          Plug in the information from the problem.

 

\(\frac{14}{10}=\frac{\text{new width}}{2}\)          Can you finish it from here?  smiley

 

--------------------

 

3)   First let's convert 3 feet into inches.   1 ft  =  12 in   →   3 ft  =  36 in

 

Now let's call the unknown scale factor  " s " .

 

4.5s  =  36      Divide both sides by  4.5 .

     s  =  8

 

So each side of the triangle is multiplied by  8  .

The base of the larger triangle will then   =   (8 * 6) inches   =   48 inches   =   4 feet

 

--------------------

 

4)   If it takes 0.03 inches to make 1 mile on the map, then it will take 0.03 * 120 inches to make 120

      miles on the map...which is 3.6 inches.

Sep 29, 2017
Sep 28, 2017

0 Online Users