Processing math: 100%
 
  Questions   
Sort: 
 #2
avatar
0
Jan 30, 2018
 #2
avatar+299 
0
Jan 30, 2018
 #2
avatar+299 
-1
Jan 30, 2018
 #4
avatar+292 
+1
Jan 30, 2018
 #2
avatar+26396 
+5

 If $f$ is a polynomial of degree $4$ such that f(0)=f(1)=f(2)=f(3)=1 and f(4)=0, then determine $f(5)$.

 

f(0)f(1)f(2)f(3)f(4)f(5)d0=1111041. Difference d1=000142. Difference d2=00133. Difference d3=0124. Difference d4=11

 

 d4=1 is constant, if a polynomial is of degree 4.

 

f(5)=1+(1)+(1)+(1)+0=4

 

 

polynomial:

an=(n10)d0+(n11)d1+(n12)d2+(n13)d3+(n14)d4d0=1d1=d2=d3=0d4=1an=(n10)1+(n11)0+(n12)0+(n13)0+(n14)(1)an=(n10)1(n14)|(n10)=1an=1(n14)|n=x+1f(x)=1(x4)(x4)=(x4)(x13)(x22)(x31)f(x)=1x(x1)(x2)(x3)24

 

laugh

Jan 30, 2018

0 Online Users