Questions   
Sort: 
 #1
avatar+2446 
0

Arithmetic sequences are written in the form of the following:

 

 \(a_n=a_1+d(n-1)\).

an is the nth term of the sequence

a1 is the first term of the sequence 

d is the common difference

n is the desired term number

 

1) We already know the information necessary to write an equation for the nth term of this sequence. 

 

\(a_1=-7; d=\frac{5}{2}\\ a_n=-7+\frac{5}{2}(n-1)\) The only thing left to do is simplify. Distributing is the first step to accomplish this.
\(a_n=-\frac{14}{2}+\frac{5}{2}n-\frac{5}{2}\) Combine like terms. 
\(a_n=\frac{5}{2}n-\frac{19}{2}\) This is completely simplified.
   

 

2) There is a formula that exists for the summation of an arithmetic series or geometric series, but that probably would not help your understanding anyway; I can derive it for you, though. 

 

We have to know the last term, and we can generate this by using the formula from before: \(a_n=a_1+d(n-1)\). Therefore, n=10, d=5, and a1=5:

 

\(a_{10}=-5+5(10-1)\) Evaluate this to determine the last term of the sequence.
\(a_{10}=-5+5*9\) Simplify the right hand side.
\(a_{10}=40\)  
   

 

Now, let's attempt to evaluate the sum. Standard notation dictates \(S_n\) for the summation. 

 

\(S_{10}=-5+0+...+35+40\\ S_{10}=\hspace{2mm}40+35+...+0\hspace{2mm}-5\\ \overline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}\\ 2S_{10}=\underbrace{35+35+...+35+35}=35*10=350\\ \hspace{24mm}\text{10 times}\\ S_{10}=175\) All I did here is reverse the same sum and added both of them together. This made it significantly easier to determine the sum. 
   

 

I did not answer every question here because the others can be answered with the knowledge given above, albeit not directly. Try and figure it out yourself. 

 #1
avatar+26403 
+2

Let \(\mathcal{R}\) denote the circular region bounded by x^2 + y^2 = 36.
The lines x = 4 and y = 3 partition \(\mathcal{R}\) into four regions \(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \text{ and } \mathcal{R}_4\).
Let \([\mathcal{R}_i]\) denote the area of region\( \mathcal{R}_i\).
If \([\mathcal{R}_1] > [\mathcal{R}_2] > [\mathcal{R}_3] > [\mathcal{R}_4]\), then compute \([\mathcal{R}_1] - [\mathcal{R}_2] - [\mathcal{R}_3] + [\mathcal{R}_4]\).

 

\(\text{Let $ \mathcal{R}_1 = \mathcal{R}_{11} + \mathcal{R}_{12} + \mathcal{R}_{13} + \mathcal{R}_{14} $ } \\ \text{Let $ \mathcal{R}_2 = \mathcal{R}_{21} + \mathcal{R}_{22} $ } \\ \text{Let $(1)\qquad \mathcal{R}_2 = \mathcal{R}_{13} + \mathcal{R}_{14} $ } \\ \text{Let $(2)\qquad \mathcal{R}_3 = \mathcal{R}_{12} + \mathcal{R}_{13} $ } \\ \text{Let $(3)\qquad \mathcal{R}_4 = \mathcal{R}_{21} $ } \\ \\ \text{Let $(4)\qquad \mathcal{R}_{13} = \mathcal{R}_{21} $ } \\ \text{Let $(5)\qquad \mathcal{R}_{1} -\mathcal{R}_{13}-\mathcal{R}_{14} = \mathcal{R}_{12} + \mathcal{R}_{11} $ }\)

 

\(\begin{array}{|rcll|} \hline [\mathcal{R}_1] - [\mathcal{R}_2] - [\mathcal{R}_3] + [\mathcal{R}_4] &=& ([\mathcal{R}_1] - \underbrace{[\mathcal{R}_2])}_{= [\mathcal{R}_{13}] + [\mathcal{R}_{14}]} - (\underbrace{[\mathcal{R}_3]}_{=[\mathcal{R}_{12}] + [\mathcal{R}_{13}] } - \underbrace{[\mathcal{R}_4]}_{=[\mathcal{R}_{21}] } ) \\\\ &=& ( \underbrace{[\mathcal{R}_1] - [\mathcal{R}_{13}] - [\mathcal{R}_{14}]}_{=[\mathcal{R}_{12}] + [\mathcal{R}_{11}] } ) -( [\mathcal{R}_{12}] + \underbrace{[\mathcal{R}_{13}]}_{=[\mathcal{R}_{21}]} - [\mathcal{R}_{21}] ) \\ \\ &=& ( [\mathcal{R}_{12}] + [\mathcal{R}_{11}] ) -( [\mathcal{R}_{12}] + [\mathcal{R}_{21}] - [\mathcal{R}_{21}] ) \\ \\ &=& ( [\mathcal{R}_{12}] + [\mathcal{R}_{11}] ) -[\mathcal{R}_{12}] \\ \\ &=& [\mathcal{R}_{11}] \\ \\ &=& 8 \times 6 \\ \\ &\mathbf{=}& \mathbf{ 48 } \\ \hline \end{array}\)

 

This last region is simply a rectangle of height 6 and width 8, so its area is 48.

 

Source: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjoxuXK74ncAhVNr6QKHcfOByQQFgg3MAE&url=https%3A%2F%2Fservices.artofproblemsolving.com%2Fdownload.php%3Fid%3DYXR0YWNobWVudHMvYi84LzAwNWQ1ZDMzMmNlZmNhMmRiM2Q3YTg2YmVhZDE5NjFmYmIwYjUz%26rn%3DMjAxMGNvbnRlc3RlbnRpcmVkcmFmdHYxLjQucGRm&usg=AOvVaw3xDrFBFJINmMsnAYS_3zde

 

 

laugh

Jul 6, 2018
 #1
avatar
0
Jul 6, 2018
Jul 5, 2018
 #1
avatar+279 
0
Jul 5, 2018

1 Online Users