Questions   
Sort: 
 #2
avatar+26367 
+4

i need the answer and solution preferably please.

 

if  \(\large{ \tan(120^\circ-x)=\dfrac{\sin(120^\circ) -\sin(x)} {\cos(120^\circ) -\cos(x)} }\), where \(\large{0^\circ < x < 180^\circ}\), compute \(x\)

 

\(\text{Let $ \mathbf{s} = \sin(120^\circ)= \sin(60^\circ)=\dfrac{\sqrt{3}} {2} $} \\ \text{Let $ \mathbf{c} = \cos(120^\circ)=-\cos(60^\circ)=-\dfrac{1} {2} $} \\ \)

LHS:

\(\begin{array}{|rcll|} \hline \tan(120^\circ-x) &=& \dfrac{\sin(120^\circ-x)} {\cos(120^\circ-x)} \\\\ &=& \dfrac{\sin(120^\circ)\cos(x)-\cos(120^\circ)\sin(x)} {\cos(120^\circ)\cos(x)+\sin(120^\circ)\sin(x)} \\\\ &=& \dfrac{s\cdot \cos(x)-c\cdot\sin(x)} {c\cdot\cos(x)+s\cdot\sin(x)} \\ \hline \end{array}\)

 

RHS:

\(\begin{array}{|rcll|} \hline \dfrac{\sin(120^\circ) -\sin(x)} {\cos(120^\circ) -\cos(x)} \\\\ &=& \dfrac{ 2\cos\left(\dfrac{120^\circ+x}{2}\right) \sin\left(\dfrac{120^\circ-x}{2}\right) } {-2\sin\left(\dfrac{120^\circ+x}{2}\right) \sin\left(\dfrac{120^\circ-x}{2}\right)} \\\\ &=& -\dfrac{ \cos\left(\dfrac{120^\circ+x}{2}\right) } { \sin\left(\dfrac{120^\circ+x}{2}\right) } \\\\ &=& -\dfrac{ \cos\left(60^\circ+\dfrac{x}{2}\right) } { \sin\left(60^\circ+\dfrac{x}{2}\right) } \\\\ &=& -\dfrac{\cos(60^\circ)\cos\left(\dfrac{x}{2}\right) -\sin(60^\circ)\sin\left(\dfrac{x}{2}\right) } {\sin(60^\circ)\cos\left(\dfrac{x}{2}\right) +\cos(60^\circ)\sin\left(\dfrac{x}{2}\right) } \\\\ &=& \dfrac{\sin(60^\circ)\sin\left(\dfrac{x}{2}\right) -\cos(60^\circ)\cos\left(\dfrac{x}{2}\right) } {\sin(60^\circ)\cos\left(\dfrac{x}{2}\right) +\cos(60^\circ)\sin\left(\dfrac{x}{2}\right) } \\\\ &=& \dfrac{s\cdot \sin\left(\dfrac{x}{2}\right) +c\cdot \cos\left(\dfrac{x}{2}\right) } {s\cdot \cos\left(\dfrac{x}{2}\right) -c\cdot \sin\left(\dfrac{x}{2}\right) } \\ \hline \end{array}\)

 

\(\begin{array}{|lcll|} \hline \dfrac{s\cdot \cos(x)-c\cdot\sin(x)} {c\cdot\cos(x)+s\cdot\sin(x)} = \dfrac{s\cdot \sin\left(\dfrac{x}{2}\right) + c\cdot \cos\left(\dfrac{x}{2}\right) } {s\cdot \cos\left(\dfrac{x}{2}\right) - c\cdot \sin\left(\dfrac{x}{2}\right) } \\\\ (s\cdot \cos(x)-c\cdot\sin(x)) \left(s\cdot \cos\left(\dfrac{x}{2}\right) - c\cdot \sin\left(\dfrac{x}{2}\right) \right) \\ = (c\cdot\cos(x)+s\cdot\sin(x)) \left( s\cdot \sin\left(\dfrac{x}{2}\right) + c\cdot \cos\left(\dfrac{x}{2}\right) \right) \\\\ s^2\cos(x)\cos\left(\dfrac{x}{2}\right) - sc\cos(x)\sin\left(\dfrac{x}{2}\right)- sc\sin(x)\cos\left(\dfrac{x}{2}\right)+c^2\sin(x)\sin\left(\dfrac{x}{2}\right) \\ =c^2\cos(x)\cos\left(\dfrac{x}{2}\right) + sc\cos(x)\sin\left(\dfrac{x}{2}\right)+ sc\sin(x)\cos\left(\dfrac{x}{2}\right)+s^2\sin(x)\sin\left(\dfrac{x}{2}\right) \\\\ \cos(x)\cos\left(\dfrac{x}{2}\right)(s^2-c^2)-\sin(x)\sin\left(\dfrac{x}{2}\right)(s^2-c^2)-2sc\cdot \cos(x)\sin\left(\dfrac{x}{2}\right)-2sc\cdot \sin(x)\cos\left(\dfrac{x}{2}\right) = 0 \\\\ (s^2-c^2)\left(\underbrace{ \cos(x)\cos\left(\dfrac{x}{2}\right)-\sin(x)\sin\left(\dfrac{x}{2}\right) }_{=\cos\left(x+\dfrac{x}{2}\right)} \right) -2sc\cdot\left(\underbrace{ \cos(x)\sin\left(\dfrac{x}{2}\right)+\sin(x)\cos\left(\dfrac{x}{2}\right) }_{=\sin\left(x+\dfrac{x}{2}\right)} \right) = 0 \\\\ (s^2-c^2)\cos\left(x+\dfrac{x}{2}\right) - 2sc\cdot \sin\left(x+\dfrac{x}{2}\right) = 0 \\\\ 2sc\cdot \sin\left(x+\dfrac{x}{2}\right) = (s^2-c^2)\cos\left(x+\dfrac{x}{2}\right) \\\\ 2sc\cdot \sin\left(\dfrac{3x}{2}\right) = (s^2-c^2)\cos\left(\dfrac{3x}{2}\right) \\\\ \tan\left(\dfrac{3x}{2}\right) = \dfrac{s^2-c^2} {2sc} \quad | \quad s^2-c^2 = \dfrac34-\dfrac14 = \dfrac12 \\\\ \tan\left(\dfrac{3x}{2}\right) = \dfrac{\dfrac12} {2sc} \quad | \quad 2sc = 2\dfrac{\sqrt{3}}{2}\left(-\dfrac12\right)=-\dfrac{\sqrt{3}}{2} \\\\ \tan\left(\dfrac{3x}{2}\right) = \dfrac{\dfrac12} {-\dfrac{\sqrt{3}}{2}} \\\\ \tan\left(\dfrac{3x}{2}\right) = -\dfrac{\sqrt{3}}{3} \\\\ \dfrac{3x}{2} = \arctan(-\dfrac{\sqrt{3}}{3}) +n\cdot 180^\circ \qquad n\in \mathbb{Z} \\\\ x= \dfrac{2}{3}\cdot \arctan\left(-\dfrac{\sqrt{3}}{3}\right) +\dfrac{2}{3}\cdot n\cdot 180^\circ \\\\ x= \dfrac{2}{3}\cdot (-30^\circ) + n\cdot 120^\circ \\\\ x= -20^\circ + n\cdot 120^\circ \qquad n = 1 \quad (0^\circ < x < 180^\circ) \\\\ x= -20^\circ + 120^\circ \\\\ \mathbf{x= 100^\circ } \\ \hline \end{array}\)

 

laugh

Feb 22, 2019
 #2
avatar+26367 
+4

Find all real values of a for which the equation \(\mathbf{(x^2 + a)^2 + a = x}\) has four real roots.

 

My attempt:

I assume there are 4 distinct real roots. So there are 3 local maxima/minima.

We find the local maxima/minima by differentiation. Maxima/minima occur when f'(x) = 0

 

1. Differentiation:

\(\begin{array}{|rcll|} \hline y &=& (x^2 + a)^2 -x+a \\ y' &=& 2(x^2+a)\cdot 2x-1 \\ 0 &=& 4x(x^2+a) - 1 \\ 4x(x^2+a) &=& 1 \quad | \quad : 4 \\ x(x^2+a) &=& \frac14 \\ \mathbf{x^3+ax-\frac14} & \mathbf{=} & \mathbf{0} \\ \hline \end{array}\)

 

The zero set of discriminant of the cubic  \(\mathbf{Ax^{3}+Bx^{2}+Cx+D\,}\) has discriminant
  \(\mathbf{ B^{2}C^{2}-4AC^{3}-4B^{3}D-27A^{2}D^{2}+18ABCD\,.}\)
The discriminant is zero if and only if at least two roots are equal.
If the coefficients are real numbers, and the discriminant is not zero,
the discriminant is positive if the roots are three distinct real numbers,
and negative if there is one real root and two complex conjugate roots.

 

\(\begin{array}{|rcll|} \hline \mathbf{Ax^{3}+Bx^{2}+Cx+D\,} \\ \mathbf{x^3+ax-\frac14} & \mathbf{=} & \mathbf{0} \quad | \quad A=1,\ B=0,\ C=a,\ D=-\frac14 \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \mathbf{ B^{2}C^{2}-4AC^{3}-4B^{3}D-27A^{2}D^{2}+18ABCD } &>& 0 \quad | \quad \text{there are three distinct real numbers} \\ -4a^3 -27\left(-\frac14\right)^2 &>& 0 \\ -4a^3 -\frac{27}{16} &>& 0 \\ -4a^3 &>& \frac{27}{16} \quad | \quad : -4 \\ a^3 &<& -\frac{27}{64} \\ a^3 &<& -\frac{3^3}{4^3} \\ \mathbf{ a } &\mathbf{<}& \mathbf{-\frac{3}{4}} \\ \hline \end{array}\)

 

\(\mathbf{(x^2 + a)^2 + a = x}\) has four distinct real roots if  \(\mathbf{ a<-\frac{3}{4}}\)

 

laugh

Feb 22, 2019
 #1
avatar+6248 
+1
Feb 22, 2019
 #1
avatar+26367 
+3

If a, b, c and d are positive real numbers such that
log_a  b= 8/9,
log_b  c= -(3/4),
log_c d = 2,
find the value of log_d (abc)

 

\(\begin{array}{|rclcl|} \hline \log_a(b) &=& \dfrac{\log_d(b)}{\log_d(a)} &=& \dfrac{\log_b(b)}{\log_b(a)} \\\\ & & \dfrac{\log_d(b)}{\log_d(a)} &=& \dfrac{\log_b(b)}{\log_b(a)} \quad | \quad \log_b(b) = 1 \\\\ & & \dfrac{\log_d(b)}{\log_d(a)} &=& \dfrac{1}{\log_b(a)} \quad | \quad \log_a(b)\log_b(a)=1 \\\\ & & \dfrac{\log_d(b)}{\log_d(a)} &=& \log_a(b) \\\\ & & \dfrac{\log_d(a)} {\log_d(b)}&=& \dfrac{1}{\log_a(b)} \\\\ & & \mathbf{\log_d(a)} & \mathbf{=} & \mathbf{ \dfrac{\log_d(b)}{\log_a(b)} } \qquad (1) \\ \hline \log_b(c) &=& \dfrac{\log_d(c)}{\log_d(b)} &=& \dfrac{\log_c(c)}{\log_c(b)} \\\\ & & \dfrac{\log_d(c)}{\log_d(b)} &=& \dfrac{\log_c(c)}{\log_c(b)} \quad | \quad \log_c(c) = 1 \\\\ & & \dfrac{\log_d(c)}{\log_d(b)} &=& \dfrac{1}{\log_c(b)} \quad | \quad \log_b(c)\log_c(b)=1 \\\\ & & \dfrac{\log_d(c)}{\log_d(b)} &=& \log_b(c) \\\\ & & \dfrac{\log_d(b)}{\log_d(c)} &=& \dfrac{1}{\log_b(c)} \\\\ & & \mathbf{\log_d(b)} &\mathbf{=}& \mathbf{\dfrac{\log_d(c)}{\log_b(c)}} \qquad (2) \\ \hline && \log_c(d) &=& \dfrac{\log_d(d)}{\log_d(c)} \quad | \quad \log_d(d) = 1 \\\\ && \log_c(d) &=& \dfrac{1}{\log_d(c)} \\\\ & & \mathbf{\log_d(c)} &\mathbf{=}& \mathbf{\dfrac{1}{\log_c(d)}} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \log_d(abc) &=& \log_d(a)+\log_d(b)+\log_d(c) \quad | \quad \mathbf{\log_d(a)=\dfrac{\log_d(b)}{\log_a(b)} } \qquad (1) \\ &=& \dfrac{\log_d(b)}{\log_a(b)}+\log_d(b)+\log_d(c) \\ &=& \log_d(b) \left( \dfrac{1}{\log_a(b)}+1 \right) +\log_d(c) \quad | \quad \mathbf{\log_d(b)=\dfrac{\log_d(c)}{\log_b(c)}} \qquad (2) \\ &=& \dfrac{\log_d(c)}{\log_b(c)} \left( \dfrac{1}{\log_a(b)}+1 \right) +\log_d(c) \\ &=&\log_d(c)\left( \dfrac{1}{\log_b(c)} \left( \dfrac{1}{\log_a(b)}+1 \right) + 1 \right) \quad | \quad \mathbf{\log_d(c)=\dfrac{1}{\log_c(d)}} \qquad (3) \\ \mathbf{\log_d(abc)} & \mathbf{=} & \mathbf{\dfrac{1}{\log_c(d)}\left( \dfrac{1}{\log_b(c)} \left( \dfrac{1}{\log_a(b)}+1 \right) + 1 \right)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\log_d(abc)} & \mathbf{=} & \mathbf{\dfrac{1}{\log_c(d)}\left( \dfrac{1}{\log_b(c)} \left( \dfrac{1}{\log_a(b)}+1 \right) + 1 \right)} \\\\ & = & \dfrac{1}{2}\left( \dfrac{1}{ -\dfrac{3}{4} } \left( \dfrac{1}{\dfrac{8}{9}}+1 \right) + 1 \right) \\\\ & = & \dfrac{1}{2}\left( \dfrac{-4}{3} \Big( \dfrac{1}{8}+1 \Big) + 1 \right) \\\\ & = & \dfrac{1}{2}\left( \dfrac{-4}{3} \left( \dfrac{17}{8} \right) + 1 \right) \\\\ & = & \dfrac{1}{2}\left( \dfrac{-17}{6} + 1 \right) \\\\ & = & \dfrac{1}{2}\left( \dfrac{-11}{6} \right) \\\\ & \mathbf{=} & -\mathbf{\dfrac{11}{12}} \\ \hline \end{array}\)

 

laugh

Feb 22, 2019
 #3
avatar
+1
Feb 22, 2019

2 Online Users

avatar