hm this is hard
if a function f(x) is mapping x to y, then the inverse function f(x) maps y back to x
y=151+4e−0.2x
interchange the variables x and y
x=151+4e−0.2y solve for y
y=−5ln(−x+154x)
−5ln(−x+154x)
find the domain of each inverse function
domain of \(v\begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:
the domain of a function is the set of input or argument values for which the function is real and define
find positive values for log \(0
logaf(x)⇒f(x)>0
−x+154x>0
multiply both sides by 4
4(−x+15)4x>0⋅4
simplify:
−x+15x>0
x<0 | X=0 | 0 | x=15 | x>15 | |
-x+15 | + | + | + | 0 | _ |
x | - | 0 | + | + | + |
-x+15/x | - | undefined | + | 0 | - |
OMG i cant do this anymore
srry , thats all i know