Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+26396 
+3

In a sequence of ten terms, each term (starting with the third term) is equal to the sum of the two previous terms.

The seventh term is equal to 6. Find the sum of all ten terms.

 

Let Fibonacci number sequence is:

f1=1f0=0f1=1f2=1f3=2f4=3f5=5f6=8f7=13f8=21f9=34f10=55f11=89f12=144

 

an=fn2a1+fn1a2sn=fna1+(fn+11)a2a7=f5a1+f6a2=6f6a2=6f5a1a2=6f5a1f6s10=f10a1+(f111)a2=f10a1+(f111)(6f5a1f6)=f10a1+6(f111)f6f5(f111)f6a1=(f10f5(f111)f6)a1+6(f111)f6=(555(891)8)a1+6(891)8=(555888)a1+6888=(5555)a1+611=0+66s10=66

 

laugh

Mar 5, 2019
 #2
avatar+26396 
+2

help

6321+6521+6721+6921+

 

6321+6521+6721+6921+=6(31)(3+1)+6(51)(5+1)+6(71)(7+1)+6(91)(9+1)+=624+646+668+6810+=6(124+146+168+1810+)=6k=112k(2k+2)=6k=114k(k+1)=64k=11k(k+1)=32k=11k(k+1)|1k(k+1)=1k1k+1=32k=1(1k1k+1)=32[k=1(1k)k=1(1k+1)]=32[1+k=2(1k)k=1(1k+1)]=32[1+k=2(1k)k=2(1k)]=32(1+0)=32

 

laugh

Mar 5, 2019
 #2
avatar+219 
-1
Mar 5, 2019
 #4
avatar+4624 
+2
Mar 5, 2019
 #1
avatar+130474 
+2
Mar 5, 2019

0 Online Users