Questions   
Sort: 
 #4
avatar+118609 
+1
Apr 24, 2019
 #2
avatar+104 
+2
Apr 24, 2019
 #1
avatar+26367 
+3

In convex quadrilateral abcd,ab=bc=13 , cd=da=24, and angle D= 60 degrees. 

Points X andY  are the midpoints of BC and  DA respectively. Compute XY^2 (the square of the length of  XY).

 

\(\text{Let $\angle DAC =\angle ACD = 60^\circ $} \\ \text{Let $\angle ACY = \dfrac{\angle ACD}{2} = 30^\circ $} \\ \text{Let $ AD=AC=CD =24 $} \\ \text{Let $ CY = u $} \)

 

\(\mathbf{u=\ ?}\)

\(\begin{array}{|rcll|} \hline u^2+12^2 &=& 24^2 \\ u^2 &=& 24^2-12^2 \\ \mathbf{u^2} &\mathbf{=}& \mathbf{432} \\ \hline \end{array}\)

 

cos-Rule \(\mathbf{\cos(B)=\ ?}\):

\(\begin{array}{|rcll|} \hline 24^2 &=& 13^2+13^2-2\cdot 13 \cdot 13 \cdot \cos(B) \\ \ldots \\ \mathbf{\cos(B)} &\mathbf{=}& \mathbf{1-\dfrac{24^2}{2\cdot 13^2}} \\ \hline \end{array}\)

 

\(\mathbf{\cos\left(\dfrac{B}{2}\right)=\ ?}: \)

\(\begin{array}{|rcll|} \hline \cos(B) &=& 2\cos^2\left(\dfrac{B}{2}\right) - 1 \\ 2\cos^2\left(\dfrac{B}{2}\right) &=& 1+ \cos(B) \quad | \quad \mathbf{\cos(B) = 1-\dfrac{24^2}{2\cdot 13^2} } \\ 2\cos^2\left(\dfrac{B}{2}\right) &=& 1+ 1-\dfrac{24^2}{2\cdot 13^2} \\ 2\cos^2\left(\dfrac{B}{2}\right) &=& 2-\dfrac{24^2}{2\cdot 13^2} \\ \cos^2\left(\dfrac{B}{2}\right) &=& 1-\dfrac{24^2}{2^2\cdot 13^2} \\ \cos^2\left(\dfrac{B}{2}\right) &=& \dfrac{2^2\cdot 13^2-24^2}{2^2\cdot 13^2} \\ \cos^2\left(\dfrac{B}{2}\right) &=& \dfrac{10^2}{2^2\cdot 13^2} \\ \cos\left(\dfrac{B}{2}\right) &=& \dfrac{10}{2\cdot 13} \\ \mathbf{\cos\left(\dfrac{B}{2}\right)} &\mathbf{=}& \mathbf{\dfrac{5}{13}} \\ \hline \end{array}\)

 

\(\mathbf{\sin(\alpha)=\ ?}\):

\(\begin{array}{|rcll|} \hline 180^\circ &=& B + 2\alpha \\ \ldots \\ \alpha &=& 90^\circ -\dfrac{B}{2} \\ \sin(\alpha) &=& \sin\left( 90^\circ -\dfrac{B}{2} \right) \\ \sin(\alpha) &=& \cos\left(\dfrac{B}{2} \right) \\ \mathbf{\sin(\alpha)} &\mathbf{=}& \mathbf{\dfrac{5}{13}} \\\\ \cos(\alpha) &=& \sqrt{1-\sin^2(\alpha)} \\ &=& \sqrt{1-\dfrac{5^2}{13^2}} \\ &=& \sqrt{ \dfrac{13^2-5^2}{13^2}} \\ &=& \sqrt{ \dfrac{12^2}{13^2}} \\ \mathbf{\cos(\alpha)} &\mathbf{=}& \mathbf{\dfrac{12}{13}} \\ \hline \end{array}\)

 

cos-Rule \(\mathbf{\overline{XY}^2=\ ?}\):

\(\begin{array}{|rcll|} \hline \overline{XY}^2 &=& 6.5^2+u^2-2\cdot 6.5 \cdot u \cdot \cos(\alpha+30^\circ) \\ &=& 6.5^2+432-13 \cdot u \cdot \cos(\alpha+30^\circ) \\ &=& 474.25-13 \cdot \sqrt{432} \cdot \cos(\alpha+30^\circ) \\ &=& 474.25-13 \cdot \sqrt{432} \cdot \Big( \cos(\alpha) \cos(30^\circ)-\sin(\alpha)\sin(30^\circ ) \Big) \\ &=& 474.25-13 \cdot \sqrt{432} \cdot \Big( \dfrac{12}{13}\cdot \dfrac{\sqrt{3}} {2} -\dfrac{5}{13}\cdot \dfrac{1} {2} \Big) \\ &=& 474.25-13 \cdot \sqrt{432} \cdot \Big( \dfrac {12 \sqrt{3}-5}{2\cdot 13} \Big) \\ &=& 474.25- \sqrt{432} \cdot \Big( \dfrac {12 \sqrt{3}-5}{2 } \Big) \\ &=& 474.25- \sqrt{\dfrac{432}{4}} \cdot \left( 12 \sqrt{3}-5 \right) \\ &=& 474.25- \sqrt{108} \left( 12 \sqrt{3}-5 \right) \\ &=& 474.25- \sqrt{4\cdot 27} \left( 12 \sqrt{3}-5 \right) \\ &=& 474.25- \sqrt{2^2\cdot 3^2\cdot 3} \left( 12 \sqrt{3}-5 \right) \\ &=& 474.25- 6\sqrt{ 3} \left( 12 \sqrt{3}-5 \right) \\ &=& 474.25- 6\sqrt{ 3} \cdot 12 \sqrt{3} -5\cdot 6\sqrt{ 3} \\ &=& 474.25- 72\ \cdot 3 +30\sqrt{ 3} \\ &=& 474.25- 216 +30\sqrt{ 3} \\ &=& 258.25 + 30\sqrt{ 3} \\ &=& 258.25 + 51.9615242271 \\ \mathbf{\overline{XY}^2} &\mathbf{=} & \mathbf{310.211524227} \\ \hline \end{array}\)

 

laugh

Apr 24, 2019
 #1
avatar+118609 
+3

It seems to me that this is going to be the same as rolling a dice 5 times and finding the probability that 4 is rolled any 2 times in a row.

call a 4 a success and any other a failure then   for any individual roll   P(S)=1/6     P(F)=5/6     

 

 

 

44444  Any 5 fours        1 way                                                   (1/6)^5

4444  any 4 fours           5 ways                                                 5*(1/6)^4*(5/6)

444      an 3 fours          5C3 ways = 10 ways                           10*(1/6)^3*(5/6)^2

except   4*4*4     no but all other 3 fours ok.    -1 way                (1/6)^3*(5/6)^2

No fours 1 way    (5/6)^5                                                               

P(4*4**)=P(4**4*)=P(4***4)=P(*4*4*)=P(*4**4)=P(**4*4) = (1/6)^2*(5/6)^3

 

 

\(\text {P(rolling 2 fours together in 5 rolls ) }\\ =\text{1-P(no fours)-P(1 four)-P(2 fours but not together) - P(3 fours but none together) } \\=1-(\frac{5}{6})^5- 5(\frac{1}{6})^1(\frac{5}{6})^4 - 6(\frac{1}{6})^2(\frac{5}{6})^3 - (\frac{1}{6})^3(\frac{5}{6})^2\)

 

1-(5/6)^5-5*(1/6)^1*(5/6)^4-6*(1/6)^2*(5/6)^3-(1/6)^3*(5/6)^2 = 0.0965792181069959   \(=\frac{751}{7776}\)

 

2 fours in the right places

44***

*44**

**44*

***44

P(2 fours in the right places) = 4*(1/6)^2(5/6)^3

 

OR

P(rolling 2 fours together)

=P(5 fours)+P(4 fours)+ P(3 fours) - P(4*4*4) +P(2 fours in the right places)

(1/6)^5+5*(1/6)^4*(5/6)^1+10*(1/6)^3*(5/6)^2-(1/6)^3*(5/6)^2+4*(1/6)^2(5/6)^3 = 0.0965792181069959    \(=\frac{751}{7776}\)

 

 

 

That is excellent.

I did it 2 different ways and got the same answer both times :)

Apr 24, 2019
 #1
avatar+26367 
+2

On the xy-plane, the origin is labeled with an M.

The points (1,0), (-1,0), (0,1), and (0,-1) are labeled with A's.

The points (2,0), (1,1), (0,2), (-1, 1), (-2, 0), (-1, -1), (0, -2), and (1, -1) are labeled with T's.

The points (3,0), (2,1), (1,2), (0, 3), (-1, 2), (-2, 1), (-3, 0), (-2,-1), (-1,-2), (0, -3), (1, -2), and (2, -1) are labeled with H's.

If you are only allowed to move up, down, left, and right, starting from the origin,

how many distinct paths can be followed to spell the word MATH?

 

\(\begin{array}{|lclcl|} \hline \text{Let } d &-& \text{ down } &=& 0 \\ \text{Let } r &-& \text{ right } &=& 1 \\ \text{Let } u &-& \text{ up } &=& 2 \\ \text{Let } l &-& \text{ left } &=& 3 \\ \hline \end{array}\)

 

From M to "down-A", all distinct paths

are all three digit numbers to base 4:

\(\begin{array}{|r|r|l|} \hline base_4 &\text{path} & \text{spell the word MATH} \\ \hline 000 & ddd & \checkmark \\ 001 & ddr & \checkmark \\ 002 & ddu & \\ 003 & ddl & \checkmark \\ 010 & drd & \checkmark \\ 011 & drr & \checkmark \\ 012 & dru & \\ 013 & drl & \\ 020 & dud & \\ 021 & dur & \\ 022 & duu & \\ 023 & dul & \\ 030 & dld & \checkmark \\ 031 & dlr & \\ 032 & dlu & \\ 033 & dll & \checkmark \\ \hline && 7 \text{ distinct paths to spell the word MATH } \\ \hline \end{array} \)

 

For reasons of symmetry:

\(\begin{array}{|lcll|} \hline \text{From M to "down-A" there are } 7 \text{ distinct paths to spell the word MATH } & base_4 \quad 000 \to 033 \\ \text{From M to "right-A" there are } 7 \text{ distinct paths to spell the word MATH }& base_4 \quad 100 \to 133 \\ \text{From M to "up-A" there are 7 } \text{ distinct paths to spell the word MATH } & base_4 \quad 200 \to 233 \\ \text{From M to "left-A" there are } 7 \text{ distinct paths to spell the word MATH } & base_4 \quad 300 \to 333 \\ \hline \end{array} \)

 

\(4\times 7 = 28\) distinct paths can be followed to spell the word MATH

 

laugh

Apr 24, 2019

3 Online Users

avatar
avatar
avatar