Questions   
Sort: 
 #8
avatar+26387 
+5

What is the sum of the numbers in row 2019?

 

\(\begin{array}{|lccccccc|} \hline \text{First row}: & & & &1 \\ \text{Second row}: & & &2 &, &3 \\ \text{Third Row}: & &4 &, &5 &, &6 \\ \text{Fourth row}: & 7 &, &8 &, &9 &, &10 \\ \hline \end{array}\)

 

 

\(\begin{array}{|l|ccccccccc|lcr|} \hline \text{row}& & & & & & & & & & &&\text{sum} \\ \hline 1 & & & & &1 & & & & & &=&1 \\ 2 & & & &\color{red}2 &, &\color{green}3 & & & & \left(\dfrac{2+3}{2}\right) \cdot 2 &=& 5 \\ 3 & & &\color{red}4 &, &5 &, &\color{green}6 & & & \left(\dfrac{4+6}{2}\right) \cdot 3 &=& 15 \\ 4 & & \color{red}7 &, &8 &, &9 &, &\color{green}10 & & \left(\dfrac{7+10}{2}\right) \cdot 4 &=& 34 \\ 5 & \color{red}11& , &12 &, &13 &, &14 &, &\color{green}15 & \left(\dfrac{11+15}{2}\right) \cdot 5 &=& 65 \\ \vdots & & & & &\vdots & & & & & \\ 2019 & & & & & a,\ldots ,b & & & & & \left(\dfrac{a+b}{2}\right) \cdot 2019 &=& \ ? \\ \hline n & & & & & a_n,\ldots ,b_n & & & & & \left(\dfrac{a_n+b_n}{2}\right) \cdot n &=& s_n \\ \hline \end{array}\)

 

\(\mathbf{a_n=\ ?}\)
\(\begin{array}{|lcccccccccc|} \hline \text{First row}: & d_1=1 & &2 & &4 & &7 & & 11 & \ldots \\ \text{Second Row}: & &d_2=1 & &2 & &3 & &4 & \ldots \\ \text{Third row}: & & &d_3=1 & &1 & & 1& \ldots \\ \hline \end{array}\)

\(\begin{array}{lcl} a_n &=& \dbinom{n-1}{0}\cdot d_1 + \dbinom{n-1}{1}\cdot d_2 + \dbinom{n-2}{2}\cdot d_3 \\\\ &=& \dbinom{n-1}{0}\cdot 1 + \dbinom{n-1}{1}\cdot 1 + \dbinom{n-2}{2}\cdot 1 \\\\ &=& 1 + (n-1)\cdot 1 + \dfrac{(n-2)(n-1)}{2\cdot 1}\cdot 1 \\\\ &=& 1 + n-1 + \dfrac{(n-2)(n-1)}{2} \\\\ \mathbf{a_n} &=& \mathbf{n +\dfrac{(n-2)(n-1)}{2}} \\ \end{array}\)

 

\(\mathbf{b_n=\ ?}\)

\(\begin{array}{|lcccccccccc|} \hline \text{First row}: & d_1=1 & &3 & &6 & &10 & & 15 & \ldots \\ \text{Second Row}: & &d_2=2 & &3 & &4 & &5 & \ldots \\ \text{Third row}: & & &d_3=1 & &1 & & 1& \ldots \\ \hline \end{array}\)

\(\begin{array}{lcl} b_n &=& \dbinom{n-1}{0}\cdot d_1 + \dbinom{n-1}{1}\cdot d_2 + \dbinom{n-2}{2}\cdot d_3 \\\\ &=& \dbinom{n-1}{0}\cdot 1 + \dbinom{n-1}{1}\cdot 2 + \dbinom{n-2}{2}\cdot 1 \\\\ &=& 1 + (n-1)\cdot 2 + \dfrac{(n-2)(n-1)}{2\cdot 1}\cdot 1 \\\\ &=& 1 + 2n-2 + \dfrac{(n-2)(n-1)}{2} \\\\ \mathbf{b_n} &=& \mathbf{2n-1 +\dfrac{(n-2)(n-1)}{2}} \\ \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline s_n &=& \left(\dfrac{a_n+b_n}{2}\right) \cdot n \\\\ &=& \left(\dfrac{n +\dfrac{(n-2)(n-1)}{2}+2n-1 +\dfrac{(n-2)(n-1)}{2}}{2}\right) \cdot n \\\\ &=& \left(\dfrac{3n-1 + (n-2)(n-1)}{2} \right) \cdot n \\\\ &=& \left(\dfrac{3n-1 + n^2-3n+2}{2} \right) \cdot n \\\\ \mathbf{s_n} &=& \mathbf{\left(\dfrac{ n^2+1}{2} \right) \cdot n} \\ \hline \end{array}\)

 

The sum of the numbers in row 2019

\(\begin{array}{|rcll|} \hline \mathbf{s_n} &=& \mathbf{\left(\dfrac{ n^2+1}{2} \right) \cdot n} \\\\ s_{2019} &=& \left(\dfrac{ 2019^2+1}{2} \right) \cdot 2019 \\\\ s_{2019} &=& 2038181 \cdot 2019 \\\\ \mathbf{s_{2019}} &=& \mathbf{4115087439} \\ \hline \end{array}\)

 

laugh

Jul 11, 2019
 #10
avatar+26387 
+2

What is the sum of the following sequence:
\(\mathbf{1\cdot 2\cdot 3\cdot 4\cdot 5 + 2\cdot 3\cdot 4\cdot 5\cdot 6 + 3\cdot 4\cdot 5\cdot 6\cdot 7 + 4\cdot 5\cdot 6\cdot 7\cdot 8 +\ldots + 996\cdot 997\cdot 998\cdot 999\cdot 1000}\) .

 

Using the hockey stick identity and the  binomial coefficient  \(\dbinom nk\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ 1\cdot 2\cdot 3\cdot 4\cdot 5 + 2\cdot 3\cdot 4\cdot 5\cdot 6 + 3\cdot 4\cdot 5\cdot 6\cdot 7 + 4\cdot 5\cdot 6\cdot 7\cdot 8 +\ldots + 996\cdot 997\cdot 998\cdot 999\cdot 1000 } \\\\ &=& \dfrac{5!}{0!} + \dfrac{6!}{1!} + \dfrac{7!}{2!} + \dfrac{8!}{3!} + \dfrac{9!}{4!} + \dfrac{10!}{5!} + \dfrac{11!}{6!} +\ldots + \dfrac{1000!}{995!} \\\\ &=& \dfrac{5!}{5!0!}5! + \dfrac{6!}{5!1!}5! + \dfrac{7!}{5!2!}5! + \dfrac{8!}{5!3!}5! + \dfrac{9!}{5!4!}5! + \dfrac{10!}{5!5!}5! + \dfrac{11!}{5!6!}5! +\ldots + \dfrac{1000!}{5!995!}5! \\\\ &=& \dbinom 55 5! + \dbinom 65 5! + \dbinom 75 5! + \dbinom 85 5! + \dbinom 95 5! + \dbinom {10}5 5! + \dbinom {11}5 5! +\ldots + \dbinom {1000}5 5! \\\\ &=& 5! \left( \underbrace{\dbinom 55 + \dbinom 65 + \dbinom 75 + \dbinom 85 + \dbinom 95 + \dbinom {10}5 + \dbinom {11}5 +\ldots + \dbinom {1000}5}_{\text{long stick of the hockey in Pascals triangle}} \right) \\\\ &=& 5!*\left(\underbrace{\dbinom{1001}{6}}_{\text{bend of the hockey stick(hockey stick identity)} } \right) \\\\ &=& 5!* \dbinom{1001}{6} \\\\ &=& 5!* \dfrac{1001!}{6!995!} \\\\ &=& 120*1376423590241700 \\ &=& \mathbf{165170830829004000} \\ \hline \end{array}\)

 

laugh

Jul 11, 2019
 #6
avatar+1713 
+1
Jul 11, 2019
 #5
avatar+1713 
+1
Jul 11, 2019
 #4
avatar+1713 
+1
Jul 11, 2019

2 Online Users

avatar