Questions   
Sort: 
 #1
avatar
+1
Oct 24, 2019
 #6
avatar+26388 
+3
Oct 24, 2019
 #5
avatar+118658 
+2
Oct 24, 2019
 #4
avatar+26388 
+4

An aeroplane is observed at the same instant from three stations A,B, C in a horizontal straight line

but not in a vertical plane through the aeroplane.
If \(AB=BC =c\) and the angles of elevation from A,B C are respectively  \(\alpha\), \(\beta\) and \(\gamma\),

prove that the height of the aeroplane is

\(\dfrac{c\sqrt{2}}{\sqrt{\cot^2(\alpha)+\cot^2(\gamma)-2\cot^2(\beta) }}\)

 

\(\text{The height of the aeroplane $=h $} \\ \text{$F$ is the nadir point of the aeroplane } \\ \text{$r = \overline{AF}$ } \\ \text{$s = \overline{BF}$ } \\ \text{$t = \overline{CF}$ } \\ \text{$\angle CBF = \epsilon$ } \\ \text{$\angle ABF = 180^\circ-\epsilon$ } \)

 

\(\begin{array}{|rclcrcl|} \hline \cot(\alpha) &=& \dfrac{r}{h} &\text{or}& r &=& h\cot(\alpha) \qquad (1) \\ \cot(\beta) &=& \dfrac{s}{h} &\text{or}& s &=& h\cot(\beta) \qquad (2) \\ \cot(\gamma) &=& \dfrac{t}{h} &\text{or}& t &=& h\cot(\gamma) \qquad (3) \\ \hline \end{array} \)

 

cos-rule:

\(\begin{array}{|lrcll|} \hline (1) & t^2 &=& s^2+c^2-2sc\cos(\epsilon) \\\\ & r^2 &=& s^2+c^2-2sc\cos(180^\circ-\epsilon) \\ &&& \boxed{ \cos(180^\circ-\epsilon)=- \cos(\epsilon)} \\ (2) & r^2 &=& s^2+c^2+2sc\cos(\epsilon) \\ \hline (2)+(1): & r^2+t^2 &=& s^2+c^2+2sc\cos(\epsilon)+s^2+c^2-2sc\cos(\epsilon)\\ & r^2+t^2 &=& 2s^2+2c^2 \\ & r^2+t^2-2s^2 &=& 2c^2\\ &&& \boxed{ r^2=h^2\cot^2(\alpha)\\ s^2=h^2\cot^2(\beta)\\ t^2=h^2\cot^2(\gamma) }\\ & h^2\cot^2(\alpha)+h^2\cot^2(\gamma)-2h^2\cot^2(\beta) &=& 2c^2 \\ & h^2\left(\cot^2(\alpha)+ \cot^2(\gamma)-2 \cot^2(\beta)\right) &=& 2c^2 \\ & h^2 &=& \dfrac{2c^2 }{ \cot^2(\alpha)+ \cot^2(\gamma)-2 \cot^2(\beta) } \\\\ &\mathbf{ h } &=& \mathbf{ \dfrac{c\sqrt{2} }{ \sqrt{\cot^2(\alpha)+ \cot^2(\gamma)-2 \cot^2(\beta)} } } \\ \hline \end{array}\)

 

laugh

Oct 24, 2019
 #3
avatar+26388 
+2

The difference of the roots of the quadratic equation \(x^2 + bx + c = 0\) is \(|b - 2c|\).
If \(c \neq 0\), then find \(c\) in terms of \(b\).

 

\(\begin{array}{|lrcll|} \hline & x^2 + \underbrace{ b }_{-(x_1+x_2)}x + \underbrace{ c }_{x_1x_2} &=& 0 \\ \hline & b &=& -(x_1+x_2) \\ & -b &=& x_1+x_2 \\ (1) & \mathbf{x_2} &=& \mathbf{-x_1-b} \\ \hline (2) & \mathbf{c} &=& \mathbf{x_1x_2} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline | x_1-x_2| &=& |b - 2c| \quad &| \quad \mathbf{x_2=-x_1-b} \\ | x_1-(-x_1-b)| &=& |b - 2c| \\ | 2x_1+b)| &=& |b - 2c| \quad &| \quad \text{compare}\\\\ 2x_1 &=& -2c \quad &| \quad : 2 \\ \mathbf{x_1} &=& \mathbf{-c} \\\\ \mathbf{x_2} &=& \mathbf{-x_1-b} \quad (1) \quad & | \quad \mathbf{x_1=-c} \\ x_2 &=& \mathbf{-(-c)-b} \\ \mathbf{x_2} &=& \mathbf{c-b} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{c} &=& \mathbf{x_1x_2} \quad (2) \quad & | \quad \mathbf{x_1=-c},\quad \mathbf{x_2} = \mathbf{c-b} \\ c &=& (-c)(c-b)\quad &| \quad : c \qquad c \neq 0\ ! \\ 1 &=& -(c-b) \\ 1 &=& -c+b \\ \mathbf{c} &=& \mathbf{b-1} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x_1} &=& \mathbf{-c} \quad & | \quad \mathbf{c=b-1} \\ x_1 &=& -(b-1) \\ \mathbf{x_1} &=& \mathbf{1-b} \\ \\ \mathbf{x_2} &=& \mathbf{c-b} \quad & | \quad \mathbf{c=b-1} \\ x_2 &=& b-1-b \\ \mathbf{x_2} &=& \mathbf{-1} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline | x_1-x_2| &=& |1-b-(-1)| \\ | x_1-x_2| &=& |1-b+1| \\ | x_1-x_2| &=& |2-b| \\ \hline |b-2c| &=& |b-2(b-1)| \\ |b-2c| &=& |b-2b+2)| \\ |b-2c| &=& |2-b|\ \checkmark \\ \hline \end{array}\)

 

laugh

Oct 24, 2019
 #1
avatar+118658 
0
Oct 24, 2019

3 Online Users

avatar
avatar