Questions   
Sort: 
 #6
avatar+118723 
+13

Option 1 :  Buying

cost = $560,615.26   I'll round off to $560,615

Deposit = 0.20*$560615 = $112,123 = $112,000  (roounded to the nearest thousand - paid in cash)

A= Amount borrowed = $560615 - $112000 = $448,615

Interest on loan = 6.5%pa = 0.065pa :

i = 0.065/12 = 0.0051666666666 per month

R = Regular payment = $3032.80 per month

The time to repay the loan n  must be determined. 

$$\boxed{ \mbox{Present value of an ordinary annuity }\qquad
A=R\times\frac{1-(1+i)^{-n}}{i}}$$

$$\begin{array}{rll}
A&=&R\times\frac{1-(1+i)^{-n}}{i}\\\\
448615&=&3032.80\times\frac{1-1.005416666666666^{-n}}{0.005416666666666}\\\\
\frac{448615\times 0.005416666666666}{3032.80}&=& 1-1.00516666666666^{-n}\\\\
\dfrac{448615\times 0.005416666666666}{3032.80}-1&=& -1.00516666666666^{-n}\\\\
-0.198760908&=& -1.005416666666666^{-n}\\\\
0.198760908&=& 1.005416666666666^{-n}\\\\
log(0.198760908)&=& log(1.005416666666666^{-n})\\\\
log(0.198760908)&=& -n*log(1.005416666666666)\\\\
\frac{log(0.198760908)}{log(1.005416666666666)}&=&-n\\\\
n&=&\frac{-log(0.198760908)}{log(1.005416666666666)} \\\\
n&=&299.08\;months \\\\
Loan\; period&=&25\;years\\
\end{array}$$

 

So now you need to go backwards to work out how much is owing on the house after 3 years.

22 years of the loan is left = 22*12 = 264 months

 

$$\begin{array}{rll}
A&=&R\times\frac{1-(1+i)^{-n}}{i}\\\\
A&=&3032.80\times\frac{1-(1.00541666666666)^{-264}}{0.00541666666666}\\\\
A&=&\$425,394\\\\
\end{array}$$

Equity after 3 years without considering appreciation = $560,651 - $425,394 = $135,221

Equity after 3 years considering appreciation = $135,221 * 1.0773 = $168,923

Costs without any adjustments = $12000

Balance after 3 years = $168,923-$12000 = $156,923

Aug 7, 2014
 #1
avatar+33661 
+5
Aug 7, 2014
 #1
avatar+33661 
0
Aug 7, 2014

0 Online Users