Questions   
Sort: 
 #3
avatar+33653 
+5
Feb 10, 2020
 #3
avatar+26388 
+3

Determine the value of \(2002 + \frac{1}{2} \left( 2001 + \frac{1}{2} \left( 2000 + \dots + \frac{1}{2} \left( 3 + \frac{1}{2} \cdot 2 \right) \right) \dotsb \right)\).

 

\(\begin{array}{|rcll|} \hline s&=& 2002 + \frac{1}{2} \left( 2001 + \frac{1}{2} \left( 2000 + \dots + \frac{1}{2} \left( 3 + \frac{1}{2} \cdot 2 \right) \right) \dotsb \right) \\ s &=& 2002 + 2001\left(\frac{1}{2}\right) + 2000 \left(\frac{1}{2}\right)^2+ \dots +3\left(\frac{1}{2}\right)^{1999} + 2 \left(\frac{1}{2}\right)^{2000} \\ && \boxed{ \text{We substitute }x =\frac{1}{2} } \\ s &=& 2002 + 2001x + 2000x^2+ \dots +3x^{1999} + 2x^{2000} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline s &=& 2002 + & 2001x + 2000x^2+ \dots +3x^{1999} + 2x^{2000} \\ xs &=& & 2002x + 2001x^2 + \dots +4x^{1999} + 3x^{2000} + 2x^{2001} \\ \hline xs-s &=& &x + x^2 + \dots +x^{1999}+ x^{2000}+ 2x^{2001}-2002 \\ s(x-1) &=& & x\underbrace{(1+ x^2 + \dots +x^{1999})}_{\mathbf{= \frac{1-x^{2000}}{1-x}} }+ 2x^{2001}-2002 \\ s(x-1) &=& & \frac{ x(1- x^{2000})} { 1-x}+ 2x^{2001}-2002 \quad | \quad x =\frac{1}{2} \\\\ s(\frac{1}{2}-1) &=& & \frac{ \frac{1}{2} \left(1-\left(\frac{1}{2}\right)^{2000} \right)} {1-\frac{1}{2}}+ 2\left(\frac{1}{2}\right)^{2001}-2002 \\ -\frac{1}{2}s &=& & 1-\left(\frac{1}{2}\right)^{2000} + 2\left(\frac{1}{2}\right)^{2001}-2002 \\ -\frac{1}{2}s &=& & 1-\left(\frac{1}{2}\right)^{2000} + 2\left(\frac{1}{2}\right)^{2000}\frac{1}{2}-2002 \\ -\frac{1}{2}s &=& & 1-\left(\frac{1}{2}\right)^{2000} + \left(\frac{1}{2}\right)^{2000} -2002 \\ -\frac{1}{2}s &=& & 1 -2002 \\ \frac{1}{2}s &=& & 2002-1 \\ \frac{1}{2}s &=& & 2001 \\ \mathbf{s} &=& & \mathbf{4002} \\ \hline \end{array}\)

 

\(2002 + \frac{1}{2} \left( 2001 + \frac{1}{2} \left( 2000 + \dots + \frac{1}{2} \left( 3 + \frac{1}{2} \cdot 2 \right) \right) \dotsb \right) = \mathbf{4002}\)

 

laugh

Feb 10, 2020
 #4
avatar+26388 
+5

In triangle \(XYZ\), we have \(\angle X = 60^\circ\) and \(\angle Y = 45^\circ\).
The bisector of \(\angle X\) intersects \(\overline{YZ}\) at point D, and \(DX = 24\).
What is the area of triangle \(XYZ\)?

 

 

sin-rule:

\(\begin{array}{|rcll|} \hline \dfrac{\sin(30^\circ)}{u} &=& \dfrac{\sin(45^\circ)}{24} \\\\ \mathbf{u} &=& \mathbf{\dfrac{24 \sin(30^\circ)}{\sin(45^\circ)}} \\ \hline \end{array} \begin{array}{|rcll|} \hline \dfrac{\sin(30^\circ)}{v} &=& \dfrac{\sin(75^\circ)}{24} \\\\ \mathbf{v} &=& \mathbf{\dfrac{24 \sin(30^\circ)}{\sin(75^\circ)}} \\ \hline \end{array}\)

 

\(\mathbf{u+v = \ ?}\)

\(\begin{array}{|rcll|} \hline u+v &=& \dfrac{24 \sin(30^\circ)}{\sin(45^\circ)} + \dfrac{24 \sin(30^\circ)}{\sin(75^\circ)} \\\\ u+v &=& 24 \sin(30^\circ) \left( \dfrac{1}{\sin(45^\circ)} + \dfrac{1}{\sin(75^\circ)} \right) \\ && \boxed{\sin(45^\circ) = \dfrac{\sqrt{2}}{2} \\ \sin(75^\circ) = \dfrac{1+\sqrt{3}} {2\sqrt{2}} \\ \sin(30^\circ) = \dfrac{1}{2} } \\ u+v &=& \dfrac{24}{2} \left( \dfrac{2} {\sqrt{2}} + \dfrac{2\sqrt{2}}{1+\sqrt{3}} \right) \\ u+v &=& 24 \left( \dfrac{1} {\sqrt{2}} + \dfrac{ \sqrt{2}}{1+\sqrt{3}} \right) \\ \ldots \\ \mathbf{u+v} &=& \mathbf{12\sqrt{6}} \\ \mathbf{\left(u+v\right)^2} &=& \mathbf{864} \\ \hline \end{array}\)

 

sin-rule:

\(\begin{array}{|rcll|} \hline \dfrac{\sin(60^\circ)}{u+v} &=& \dfrac{\sin(75^\circ)}{z} \\\\ \mathbf{z} &=& \mathbf{\dfrac{(u+v) \sin(75^\circ)}{\sin(60^\circ)}} \\ \hline \end{array}\)

 

The area of triangle \(XYZ\):

\(\begin{array}{|rcll|} \hline A &=& \dfrac{z(u+v)\sin(45^\circ)}{2} \quad | \quad \mathbf{z=\dfrac{(u+v) \sin(75^\circ)}{\sin(60^\circ)}} \\\\ A &=& \dfrac{ \left(u+v\right)^2\sin(45^\circ)\sin(75^\circ)}{2\sin(60^\circ)} \quad | \quad \mathbf{\left(u+v\right)^2=864} \\\\ A &=& \dfrac{864\sin(45^\circ)\sin(75^\circ)}{2\sin(60^\circ)} \\\\ A &=& \dfrac{432\sin(45^\circ)\sin(75^\circ)}{\sin(60^\circ)} \\\\ && \boxed{\sin(45^\circ) = \dfrac{\sqrt{2}}{2} \\ \sin(75^\circ) = \dfrac{1+\sqrt{3}} {2\sqrt{2}} \\ \sin(60^\circ) = \dfrac{\sqrt{3}}{2} } \\ A &=& \dfrac{432\sqrt{2}}{2} \dfrac{(1+\sqrt{3})} {2\sqrt{2}} \dfrac{2}{\sqrt{3}} \\\\ A &=& 216 \dfrac{(1+\sqrt{3})} {\sqrt{3}} \\\\ A &=& 216 \dfrac{(1+\sqrt{3})} {\sqrt{3}} \dfrac{\sqrt{3}}{\sqrt{3}} \\\\ A &=& \dfrac{216}{3} (1+\sqrt{3})\sqrt{3} \\\\ A &=& 72(1+\sqrt{3})\sqrt{3} \\\\ A &=& 72(3+\sqrt{3}) \\ \mathbf{A} &=& \mathbf{340.707658145 } \\ \hline \end{array}\)

 

laugh

Feb 10, 2020
 #2
avatar
0
Feb 10, 2020
 #2
avatar
0
Feb 10, 2020
 #2
avatar
0
Feb 10, 2020
 #2
avatar
0
Feb 10, 2020
 #2
avatar
+1
Feb 10, 2020

1 Online Users

avatar