Questions   
Sort: 
 #2
avatar+865 
+2

Refer to here: https://web2.0calc.com/questions/what-is-the-4000th-digit-following-the-decimal-point-in-the-expansion-of-nbsp.

 

If you don't have time to click the link (which you should), this is what CPhill said: 

 

 

Notice the pattern........

 

1/175  = 0.0057142857142857........

 

There is a repeated cycle of 6 digits.......

 

2 leading zeroes + 666 cycles of 6 digits = 3998 digits......so ......two more digits will give us 4000......and the second digit in the pattern is "7".....so.......this is the 4000th digit........!!!

Feb 17, 2020
 #1
avatar+865 
+1

I'm not sure... I googled it and I got to this website: https://dev.biologists.org/content/132/13/2931. Hope it helps!

Sorry, I haven't really done much biology at school yet.

Feb 17, 2020
 #9
avatar
0
Feb 17, 2020
 #1
avatar
0
Feb 17, 2020
 #3
avatar+26367 
+2

2) Evaluate the series

\(\dfrac{1}{3^1}+\dfrac{4}{3^2}+\dfrac{7}{3^3}+\dfrac{10}{3^4}+\cdots \).

 

\(\begin{array}{|rcll|} \hline (1+0*3)\left(1*\frac{1}{3}\right) +(1+1*3)\left(1*\frac{1}{3^2}\right) +(1+2*3)\left(1*\frac{1}{3^3}\right) +(1+3*3)\left(1*\frac{1}{3^4}\right) + \dotsb \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \text{arithmetical sequence:} \\ {\color{red}1}+({\color{red}1}+1*{\color{orange}3})+({\color{red}1}+2*{\color{orange}3})+({\color{red}1}+3*{\color{orange}3})+\dotsb+\Big({\color{red}1}+(n-1)*{\color{orange}3}\Big)+\dotsb \\ \boxed{a={\color{red}1},\ d={\color{orange}3} \text{ is the common difference} } \\\\ \text{geometric series:} \\ {\color{blue}\frac{1}{3} } +{\color{blue}\frac{1}{3} }\left({\color{green}\frac{1}{3}}\right)^1 +{\color{blue}\frac{1}{3} }\left({\color{green}\frac{1}{3}}\right)^2 +{\color{blue}\frac{1}{3} }\left({\color{green}\frac{1}{3}}\right)^3 +\dotsb +{\color{blue}\frac{1}{3} }\left({\color{green}\frac{1}{3}}\right)^{n-1} +\dotsb\\ \boxed{ b={\color{blue}\frac{1}{3} },\ r={\color{green}\frac{1}{3}}\ \text{ is the common ratio} } \\ \hline \end{array}\)

 

Formula:
sum of a infinite arithmetico-geometric sequence

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\\\ && \boxed{a={\color{red}1},\ d={\color{orange}3} \text{ is the common difference} } \\ &&\boxed{ b={\color{blue}\frac{1}{3} },\ r={\color{green}\frac{1}{3}}\ \text{ is the common ratio} } \\\\ s &=& \left(\dfrac{{\color{blue}\frac{1}{3}} }{1-{ \color{green}\frac{1}{3}} }\right) \Bigg( {\color{red}1} + { \color{orange}3} \left( \dfrac{ {\color{green}\frac{1}{3} }}{1-{\color{green}\frac{1}{3}} } \right) \Bigg) \\\\ s &=& \frac{1}{3}*\frac{3}{2} \Bigg( {\color{red}1} + \dfrac{1}{1-{\color{green}\frac{1}{3}} } \Bigg) \\\\ s &=& \frac{1}{2} *\frac{5}{2} \\\\ \mathbf{s} &=& \mathbf{\frac{5}{4}} \\ \hline \end{array}\)

 

\(\mathbf{\dfrac{1}{3^1}+\dfrac{4}{3^2}+\dfrac{7}{3^3}+\dfrac{10}{3^4}+\cdots} = \mathbf{\dfrac{5}{4}}\)

 

laugh

Feb 17, 2020
 #3
avatar+26367 
+2

Square MATH has sides of length 4, and N is the midpoint of TH.
A circle with radius 2 and center N intersects a circle with radius 4 and center M at points P and H.
What is the distance from P to MH.

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{Circle with }r=4 \\ \text{ and center } M(0,4):} \\ \hline x^2+(y-4)^2 &=& 4^2 \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{Circle with }r=2 \\ \text{ and center } N(2,0):} \\ \hline (x-2)^2+y^2 &=& 2^2 \\ \hline \end{array} \)

 

\(\begin{array}{|lcll|} \hline \mathbf{\text{Intersects at }P(x_P,\ y_P):} \\ \begin{array}{|rcll|} \hline x_P^2+(y_P-4)^2 &=& 16 \\ x_P^2+y_P^2-8yP + 16 &=& 16 \\ x_P^2+y_P^2-8yP &=& 0 \\ \mathbf{x_P^2+y_P^2} &=& \mathbf{8y_P} \\ \hline \end{array} \begin{array}{|rcll|} \hline (x_P-2)^2+y_P^2 &=& 4 \\ x_P^2-4x_P + 4 +y_P^2 &=& 4 \\ x_P^2 +y_P^2-4x_P &=& 0 \\ \mathbf{x_P^2 +y_P^2}&=& \mathbf{4x_P} \\ y_P^2 &=& 4x_P -x_P^2 \\ \mathbf{ y_P } &=& \mathbf{\sqrt{ 4x_P -x_P^2}} \\ \hline \end{array} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{x_P^2+y_P^2} &=& \mathbf{8y_P} \quad | \quad \mathbf{x_P^2 +y_P^2=4x_P},\ \mathbf{ y_P =\sqrt{ 4x_P -x_P^2}} \\ 4x_P &=& 8\sqrt{ 4x_P -x_P^2} \quad | \quad :4 \\ x_P &=& 2\sqrt{ 4x_P -x_P^2} \quad | \quad \text{square both sides} \\ x_P^2 &=& 4(4x_P -x_P^2) \\ x_P^2 &=& 16x_P -4x_P^2 \\ 5x_P^2 &=& 16x_P \\ 5x_P^2-16x_P &=& 0 \\ x_P(5x_P-16) &=& 0 \quad | \quad x_P \neq 0~! \\\\ 5x_P-16 &=& 0 \\ 5x_P &=& 16 \\ x_P &=& \dfrac{16}{5} \\ \mathbf{x_P} &=& \mathbf{3.2} \\ \hline \end{array}\)

 

The distance from P to MH is \(\mathbf{3.2}\)

 

laugh

Feb 17, 2020

1 Online Users

avatar