Questions   
Sort: 
 #1
avatar
+1

 

2/5 of a mile can be expressed as 0.4 of a mile.  Let's call it that, to make it easier for me. 

                                                                            We could do fractions, but decimals are easier. 

 

Achilles runs at 13 mph, and Turtle at 0.4 mph.  So Achilles is outdistancing Turtle by 12.6 mph. 

 

Do you see that?  In one hour, Achilles would have run 13.0 miles and Turtle would have run 0.4 mile. 

 

Well, they didn't run for an entire hour, or Achilles would have been 12.6 miles ahead of Turtle. 

 

How long did they run?  Distance = Speed x Time  ....  so let's start with that and see how far we get. 

 

Consider that 0.4 mile.  They ran long enough for that to be the Distance.  Let's set it up.

 

                                                                 D  =  S • T                                        (A "dot" means multiply.)

                                                                 0.4 mile  =  (12.6 miles/hour) • T 

Divide both sides by 12.6 miles/hour        (0.4 mile) • (12.6 miles/hour)  =  T 

Doing the division, we find that                 T  =  0.0317 hour                             (A little less than 2 minutes.) 

 

Why don't we go ahead and see if we can check that answer.... 

 

In 0.0317 hour, at 13 miles/hour, Achilles has run 0.412 mile 

In 0.0317 hour, at 0.4 mile/hour, Turtle has run     0.013 mile 

Subtract Turtle's distance from Achilles to confirm that Achilles is about 0.4 (aka 2/5) mile ahead. 

The distance doesn't come out to exactly 0.4 because we did a little rounding along the way. 

If you want a more precise answer, use a calculator and don't do any rounding. 

.

Feb 24, 2020
 #2
avatar+26403 
+3

Consider the series. 

\(\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n}*4} \\\\ &=& \dfrac{1}{4} \left( \sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n}} \right) \\\\ &=& \dfrac{1}{4} \left[ \sum \limits_{n=1}^{\infty} (1+4n) \left( \dfrac{1}{4}\right)^{n} \right] \\\\ &=& \dfrac{1}{4} \left[ -1 + \sum \limits_{n=1}^{\infty} \Big(1+4(n-1)\Big) \left( \dfrac{1}{4}\right)^{n-1} \right] \\\\ \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \mathbf{\dfrac{1}{4}( -1 + s )} \qquad \boxed{s=\sum \limits_{n=1}^{\infty} \Big(1+4(n-1)\Big) \left( \dfrac{1}{4}\right)^{n-1} } \\ \hline \end{array}\)

 

Infinite arithmetico-geometric sequence:

\(\begin{array}{|rcll|} \hline s &=& \sum \limits_{n=1}^{\infty} \Big(1+4(n-1)\Big) \left( \dfrac{1}{4}\right)^{n-1} \\ \hline \end{array}\)

\({\color{red}a}{\color{blue}b }+(a+d){\color{blue}br }+{\color{red}(a+2d)}{\color{blue}br^2 }+{\color{red}(a+3d)}{\color{blue}br^3 }+\cdots + {\color{red}\Big(a+(n-1)d \Big)}{\color{blue}br^{n-1} } + \cdots\)

 

\(\begin{array}{|lrcll|} \hline \text{arithmetical sequence:}\quad 1+5+9+13+17+\ldots \\ {\color{red}1}+({\color{red}1}+1*{\color{orange}4})+({\color{red}1}+2*{\color{orange}4})+({\color{red}1}+3*{\color{orange}4})+\dotsb+\Big({\color{red}1}+(n-1)*{\color{orange}4}\Big)+\dotsb \\ \boxed{a={\color{red}1},\ d={\color{orange}4} \text{ is the common difference} } \\\\ \text{geometric series:}\quad 1+1*\frac{1}{4^1}+1*\frac{1}{4^2}+ 1*\frac{1}{4^3}+ 1*\frac{1}{4^4}+\cdots \\ {\color{blue}1} +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^1 +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^2 +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^3 +\dotsb +{\color{blue}1}*\left({\color{green}\frac{1}{4}}\right)^{n-1} +\dotsb\\ \boxed{ b={\color{blue}1},\ r={\color{green}\frac{1}{4}}\ \text{ is the common ratio} } \\ \hline \end{array} \)

 

Formula:
sum of a infinite arithmetico-geometric sequence: \(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{s} &=& \mathbf{\left(\dfrac{b}{1-r}\right) \Bigg( a+d\left( \dfrac{r}{1-r} \right) \Bigg)} \\\\ && \boxed{a={\color{red}1},\ d={\color{orange}4} \text{ is the common difference} } \\ &&\boxed{ b={\color{blue}1 },\ r={\color{green}\frac{1}{4}}\ \text{ is the common ratio} } \\\\ s &=& \left(\dfrac{{\color{blue}1} }{1-{ \color{green}\frac{1}{4}} }\right) \Bigg( {\color{red}1} + { \color{orange}4} \left( \dfrac{ {\color{green}\frac{1}{4} }}{1-{\color{green}\frac{1}{4}} } \right) \Bigg) \\\\ s &=& \dfrac{4}{3}\left( {\color{red}1} + \dfrac{4}{3} \right) \\\\ s &=& \dfrac{4}{3} *\dfrac{7}{3} \\\\ \mathbf{s} &=& \mathbf{\dfrac{28}{9}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \mathbf{\dfrac{1}{4}( -1 + s )} \quad | \quad s=\dfrac{28}{9} \\\\ &=& \dfrac{1}{4}\left( -1 + \dfrac{28}{9} \right) \\\\ &=& \dfrac{1}{4}\left( \dfrac{19}{9} \right) \\\\ \mathbf{\sum \limits_{n=1}^{\infty} \dfrac{1+4n} {4^{n+1}}} &=& \mathbf{\dfrac{19}{36}} \\ \hline \end{array}\)

 

laugh

Feb 24, 2020
 #2
avatar+33666 
+5
Feb 24, 2020

0 Online Users