So we have this where we have
(a * (x)) ^2.
x ranges from 2n+ 1 to 1, so there are thus 2n terms in this sequence.
(a + 2nd+d) ^ 2= a^2 + 2and + ad + 4n^2d^2 + 2and + 2nd^2 + d^2 + 2nd^2 + ad.
Simplifying that is a^2 + (2nd) ^2 + d^2 + 2ad + 4and + 4(nd)^2 + 2n(d)^2.
The next term is
(a + 2nd)^2 = a^2 + 4and + 4(nd)^2
So we subtract and get...
a^2 + (2nd) ^2 + d^2 + 2ad + 4and + 4(nd)^2 + 2n(d)^2
d^2 + 2ad + 2n(d)^2??
Yeah...
Imma use a expander caculator.
-2ad+4adn+4d^2n^2-4d^2n+d^2+a^2
and the next term...
-4ad+4adn+4d^2n^2-8d^2n+4d^2+a^2
So we have now...
-2ad+4adn+4d^2n^2-4d^2n+d^2+a^2
-4ad+4adn+4d^2n^2-8d^2n+4d^2+a^2
That's -2ad -4d^2n + 3d^2
Last time was
2ad + 2d^2n +2ad
-2ad -4d^2n + 3d^2
So minus -4ad ...
I give up
sorry