A formula for (a + b)3 = a3 + 3·a2·b + a·b2 + b3.
[You can check this formula by multiplication of (a+b)·(a + b)·(a + b).]
For (n - 1)3 by using the above formula ---> a = n and b = -1:
(a + b)3 = a3 + 3·a2·b + 3·a·b2 + b3.
(n - 1)3 = (n)3 + 3·(n)2·(-1) + 3·(n)·(-1)2 + (-1)3.
= n3 - 3n2 + 3n - 1
For (n - 2)3 by using the above formula ---> a = n and b = -2:
(a + b)3 = a3 + 3·a2·b + 3·a·b2 + b3.
(n - 1)3 = (n)3 + 3·(n)2·(-2) + 3·(n)·(-2)2 + (-2)3.
= n3 - 6n2 +12n - 8
For (n - 3)3 by using the above formula ---> a = n and b = -3:
(a + b)3 = a3 + 3·a2·b + 3·a·b2 + b3.
(n - 3)3 = (n)3 + 3·(n)2·(-3) + 3·(n)·(-3)2 + (-3)3.
= n3 - 9n2 +27n - 27
Putting all this together:
n3 = (n - 1)3 + (n - 2)3 + (n - 3)3
n3 = ( n3 - 3n2 + 3n - 1 ) + ( n3 - 6n2 +12n - 8 ) + ( n3 - 9n2 +27n - 27 )
n3 = 3n3 -18n2 + 42n - 36
0 = 2n3 - 18n2 + 42n - 36
This is not nice ... so, if there is an integer value for a solution, it must be a factor of 36 ...
keep trying them (1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 9, -9, 18, -18, 36, -36) in the problem
until you find one that works ... fortunately, there is one: n = 6.
Factor out the (n - 6) factor to get (n - 6)(2n2 - 6n + 6) = 2(n - 6)(n2 - 3n + 3)
n2 - 3n + 3 has no integer solutions (it doesn't even have real solutions),
so the only integer solution is 6.