Questions   
Sort: 
 #2
avatar+26400 
+1

The following grid shows a magic square.  
What is the sum of the three numbers in any row?
\(\begin{array}{c|c|c} 2x & 3 & 2 \\ \hline & & -3 \\ \hline 0 & x & \end{array}\)


Find x:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} 2x & 3 & 2 \\ \hline & & -3 \\ \hline 0 & x & \color{red}y \end{array} \\ 0+x+y &=& 2-3+y \\ x &=& 2-3 \\ \mathbf{x}&=& \mathbf{-1} \\ \hline \end{array}\)

 

The sum of the three numbers in any row:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} \color{red}-2 & \color{red}3 & \color{red}2 \\ \hline & & -3 \\ \hline 0 & -1 & \end{array} \\ -2+3+2 &=& \mathbf{3} \\ \hline \end{array}\)

 

Find y:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline & \color{red}y& -3 \\ \hline 0 & -1 & \end{array} \\ 0+y+2 &=& 3 \\ y &=& 3-2 \\ \mathbf{y}&=& \mathbf{1} \\ \hline \end{array}\)

 

Find y:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline & 1& -3 \\ \hline 0 & -1 & \color{red}y \end{array} \\ -2+1+y &=& 3 \\ -1+y &=& 3\\ y &=& 3+1\\ \mathbf{y}&=& \mathbf{4} \\ \hline \end{array}\)

 

Find y:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline\color{red}y & 1& -3 \\ \hline 0 & -1 & 4 \end{array} \\ -2+y+0 &=& 3 \\ y &=& 3+2 \\ \mathbf{y}&=& \mathbf{5} \\ \hline \end{array}\)

 

The magic square:

\(\begin{array}{|rcll|} \hline \begin{array}{c|c|c} -2 & 3 & 2 \\ \hline 5 & 1& -3 \\ \hline 0 & -1 & 4 \end{array} \\ \hline \end{array} \begin{array}{rcll} 0+1+2 &=& 3 \\ -2+3+2 &=& 3 \\ 5+1-3 &=& 3 \\ 0-1+4 &=& 3 \\ -2+1+4 &=& 3 \\ -2+5+0 &=& 3 \\ 3+1-1 &=& 3 \\ 2-3+4 &=& 3 \\ \end{array}\)

 

laugh

Jun 8, 2020
 #1
avatar+26400 
+1

In a University out of 120 students, 15 opted mathematics only, 16 opted statistics only, 9 opted physics only and
45 opted physics and mathematics, 30 opted physics and statistics, 8 opted mathematics and statistics, and
80 opted physics.
Find the sum of number of students who opted mathematics and those who didn't opted any of the subjects given.

 

My attempt:

\(\begin{array}{|rcll|} \hline x+y+t+9 &=& 80 \quad | \quad x+y = 45 \\ 45+t+9 &=& 80 \\ t+54 &=& 80 \\ t &=& 80-54 \\ \mathbf{ t } &=& \mathbf{26} \\ \hline \end{array} \begin{array}{|rcll|} \hline 30 &=& y+t \\ -~~8 &=& y+z \\ \hline 22 &=& y+t-(y+z) \\ 22 &=& y+t-y-z \\ 22 &=& t-z \\ z+22 &=& t \\ \mathbf{ z } &=& \mathbf{t-22} \quad | \quad \mathbf{ t =26} \\ z &=& 26-22 \\ \mathbf{ z } &=& \mathbf{4} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline z+y &=& 8 \\ y &=& 8-z \quad | \quad \mathbf{z=4} \\ y &=& 8-4\\ \mathbf{ y } &=& \mathbf{4} \\ \hline \end{array} \begin{array}{|rcll|} \hline x+y &=& 45 \\ x &=& 45-y \quad | \quad \mathbf{y=4} \\ x &=& 45-4\\ \mathbf{ x } &=& \mathbf{41} \\ \hline \end{array}\)

 

The sum of number of students who opted mathematics:

\(\begin{array}{|rcll|} \hline \text{Mathematics} &=& 15+x+y+z \\ \text{Mathematics} &=& 15+41+4+4 \\ \mathbf{\text{Mathematics}} &=& \mathbf{64} \\ \hline \end{array} \)

 

The sum of number of students who didn't opted any of the subjects given:

\(\begin{array}{|rcll|} \hline \text{didn't opted any} &=& 120-(9+15+16+x+y+z+t) \\ \text{didn't opted any} &=& 120-(40+41+4+4+26) \\ \text{didn't opted any} &=& 120-115 \\ \mathbf{\text{didn't opted any}} &=& \mathbf{5} \\ \hline \end{array}\)

 

laugh

Jun 8, 2020

0 Online Users