Questions   
Sort: 
 #5
avatar+1005 
+1
Jun 9, 2020
 #2
avatar+1264 
+22
Jun 9, 2020
 #2
avatar+223 
-1
Jun 9, 2020
 #2
avatar+614 
0
Jun 9, 2020
 #2
avatar+26400 
0

The system of equations

\(\dfrac{xy}{x+y}=1,\ \dfrac{xz}{x+z}=2,\ \dfrac{yz}{y+z}=3 \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{xy}{x+y}} &=& \mathbf{1} \\\\ \dfrac{x+y}{xy} &=& 1 \\\\ \dfrac{x}{xy}+\dfrac{y}{xy} &=& 1 \\\\ \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} &=& \mathbf{1} \qquad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\dfrac{xz}{x+z}} &=& \mathbf{2} \\\\ \dfrac{x+z} {xz}&=& \dfrac{1}{2} \\\\ \dfrac{x} {xz}+\dfrac{z} {xz}&=& \dfrac{1}{2} \\\\ \mathbf{\dfrac{1} {z}+\dfrac{1}{x}} &=& \mathbf{\dfrac{1}{2}} \qquad (2) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\dfrac{yz}{y+z}} &=& \mathbf{3} \\\\ \dfrac{y+z}{yz} &=& \dfrac{1}{3} \\\\ \dfrac{y}{yz}+\dfrac{z}{yz} &=& \dfrac{1}{3} \\\\ \mathbf{\dfrac{1}{z}+\dfrac{1}{y}} &=& \mathbf{\dfrac{1}{3}} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{x=\ ?} \\ \hline (1)+(2)-(3): & \dfrac{1}{y}+\dfrac{1}{x} + \dfrac{1} {z}+\dfrac{1}{x}- \left( \dfrac{1}{z}+\dfrac{1}{y} \right) &=& 1 +\dfrac{1}{2}- \dfrac{1}{3} \\\\ & \dfrac{2}{x} &=& 1 +\dfrac{1}{2}- \dfrac{1}{3} \quad | \quad * 6 \\\\ & \dfrac{12}{x} &=& 6 + 3- 2 \\\\ & \dfrac{12}{x} &=& 7 \\\\ & \mathbf{x} &=& \mathbf{\dfrac{12}{7}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{y=\ ?} \\ \hline (1)-(2)+(3): & \dfrac{1}{y}+\dfrac{1}{x} - \left(\dfrac{1} {z}+\dfrac{1}{x}\right)+ \dfrac{1}{z}+\dfrac{1}{y} &=& 1 -\dfrac{1}{2}+ \dfrac{1}{3} \\\\ & \dfrac{2}{y} &=& 1 -\dfrac{1}{2}+ \dfrac{1}{3} \quad | \quad * 6 \\\\ & \dfrac{12}{y} &=& 6 - 3+ 2 \\\\ & \dfrac{12}{y} &=& 5 \\\\ & \mathbf{y} &=& \mathbf{\dfrac{12}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{z=\ ?} \\ \hline -(1)+(2)+(3): & - \left( \dfrac{1}{y}+\dfrac{1}{x} \right) + \dfrac{1} {z}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y} &=& -1 +\dfrac{1}{2}+ \dfrac{1}{3} \\\\ & \dfrac{2}{z} &=& -1 +\dfrac{1}{2}+ \dfrac{1}{3} \quad | \quad * 6 \\\\ & \dfrac{12}{z} &=& -6 + 3+ 2 \\\\ & \dfrac{12}{z} &=& -1 \\\\ & \mathbf{z} &=& \mathbf{-12} \\ \hline \end{array}\)

 

laugh

Jun 9, 2020
 #1
avatar+26400 
+1

Find the coefficient of \(x^3*y*z^2\) in the expandsion of \((3x - 5y + z)^6\).

 

Multinomial theorem:

For any positive integer m and any nonnegative integer n, the multinomial formula tells us how a sum with m terms expands when raised to an arbitrary power n:
\(\left( x_1+x_2+\cdots +x_m \right)^n = \sum \limits_{k_1+k_2+\dots+k_m=n} \dbinom{n}{k_1,k_2,\dots,k_m}\cdot x_1^{k_1}\cdot x_2^{k_2}\dots x_m^{k_m}\)
where  
\(\dbinom{n}{k_1,k_2,\dots,k_m} = \dfrac{n!}{k_1!k_2!\dots k_m!}\)

 

Source: https://en.wikipedia.org/wiki/Multinomial_theorem

 

\(\begin{array}{|lcll|} \hline x^3*y*z^2 \\ n=6,\ m=3 \\ \hline k_1 = 3,\ k_2 = 1,\ k_3 = 2 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (3x - 5y + z)^6&=& \dots + \dfrac{6!}{3!1!2!} (3x)^3(-5y)^1z^2 + \dots \\ \hline && \dfrac{6!}{3!1!2!} (3x)^3(-5y)^1z^2 \\\\ &=&\dfrac{6!}{3!1!2!}* 27x^3(-5y)z^2 \\\\ &=& \dfrac{4*5*6}{2}*27*(-5)x^3yz^2 \\\\ &=& -60*135 *x^3yz^2 \\\\ &=& \mathbf{-8100}x^3yz^2 \\ \hline \end{array}\)

 

laugh

Jun 9, 2020

0 Online Users