Questions   
Sort: 
 #2
avatar+107 
-2
Jul 1, 2020
 #1
avatar+26400 
+4

Circle A, with a radius of 9, has a horizontal chord BC with a length of 10.
From point C, a vertical line extends to point D.
From point D, a horizontal line extends to point E on the circle's circumference.
Line segment DE has a length of 3.
From point E, another vertical line extends to point F on the circle's circumference.
Points B and D connect to form a line segment, and so do points D and F.
What is the angle (in degrees) of \(\angle BDF\)?

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle AEN:} \\ \hline \dfrac{y^2}{4} + 8^2 &=& 9^2 \\\\ \dfrac{y^2}{4} &=& 9^2- + 8^2 \\\\ \dfrac{y^2}{4} &=& 17 \\\\ \mathbf{y^2} &=& \mathbf{68} \\ \mathbf{y} &=& \mathbf{2\sqrt{17}} \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle DEF:} \\ \hline v^2 &=& 3^2 + y^2 \\ v^2 &=& 9+68 \\ \mathbf{v^2} &=& \mathbf{77} \\ \mathbf{v} &=& \mathbf{\sqrt{77}} \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle BMA:} \\ \hline 5^2+z^2 &=& 9^2 \\ z^2 &=& 81-25 \\ z^2 &=& 56 \\ \mathbf{z} &=& \mathbf{2\sqrt{14}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x + \dfrac{y}{2} &=& z \\\\ x &=& z- \dfrac{y}{2} \\\\ x &=& 2\sqrt{14}- \dfrac{2\sqrt{17}}{2} \\\\ \mathbf{x} &=& \mathbf{2\sqrt{14}- \sqrt{17}} \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle BCD:} \\ \hline u^2 &=& 10^2+x^2 \\ u^2 &=& 100+ \left( 2\sqrt{14}- \sqrt{17} \right)^2 \\ u^2 &=& 100+ 4*14-4\sqrt{14*17} + 17 \\ \mathbf{u^2} &=& \mathbf{173-4\sqrt{238}} \\ \mathbf{u} &=& \mathbf{\sqrt{173-4\sqrt{238}}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle BPF:} \\ \hline w^2 &=& 13^2 +(x+y)^2 \\ w^2 &=& 13^2 +\left( 2\sqrt{14}- \sqrt{17}+2\sqrt{17} \right)^2 \\ w^2 &=& 13^2 +\left( 2\sqrt{14}+\sqrt{17} \right)^2 \\ w^2 &=& 13^2 +4*14+4\sqrt{14*17} + 17 \\ \mathbf{w^2} &=& \mathbf{242+4\sqrt{238}} \\ \hline \end{array}\)

 

cos-rule:

\(\begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle BDF:} \\ \hline \mathbf{w^2} &=& \mathbf{u^2+v^2-2uv\cos(\theta)} \\\\ \cos(\theta) &=& \dfrac{u^2+v^2-w^2}{2uv} \\\\ \cos(\theta) &=& \dfrac{173-4\sqrt{238}+77-(242+4\sqrt{238})}{2\sqrt{173-4\sqrt{238}}\sqrt{77}} \\\\ \cos(\theta) &=& \dfrac{8-8\sqrt{238}} {2\sqrt{13321-308\sqrt{238}}} \\\\ \cos(\theta) &=& \dfrac{4(1-\sqrt{238})} {\sqrt{13321-308\sqrt{238}}} \\\\ \cos(\theta) &=& \dfrac{-57.7089944822} {92.5710938948} \\\\ \cos(\theta) &=& -0.62340188556 \\ \theta &=& \arccos(-0.62340188556) \\ \mathbf{\theta} &=& \mathbf{128.564985997^\circ} \\ \hline \end{array}\)

 

The angle (in degrees) of \(\angle BDF\) is \(\mathbf{128.564985997^\circ}\)

 

laugh

Jul 1, 2020
 #10
avatar
0
Jul 1, 2020
 #3
avatar
0
Jul 1, 2020
 #1
avatar+26400 
+2

I need help with this system:
\(\begin{eqnarray} x(y+z)&=&39\\ y(x+z)&=&60\\ z(x+y)&=&63 \\ x^2+y^2+z^2&=& \ ? \end{eqnarray}\)

 

\(\begin{array}{|lrcll|} \hline & x(y+z)&=&39 \\ & xy+xz &=& 39 \\ & \mathbf{xz} &=& \mathbf{39-xy} \qquad (1) \\\\ & y(x+z)&=&60 \\ & yx+yz &=&60 \\ & \mathbf{yz} &=& \mathbf{60-xy} \qquad (2) \\ \hline (1)+(2): & xz+yz &=& 39-xy+60-xy \\ & z(x+y) &=& 99-2xy \quad | \quad \mathbf{z(x+y)=63} \\ & 63 &=& 99-2xy \\ & 2xy &=& 99-63 \\ & 2xy &=& 36 \\ & \mathbf{xy} &=& \mathbf{18} \quad \text{or} \quad \mathbf{y=\dfrac{18}{x}} \qquad (3) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline x(y+z)&=& 39 \quad | \quad \mathbf{y=\dfrac{18}{x}} \\\\ x\left(\dfrac{18}{x}+z\right) &=& 39 \\\\ 18 +xz &=& 39 \\\\ xz &=& 39-18 \\\\ \mathbf{xz} &=& \mathbf{21} \quad \text{or} \quad \mathbf{x=\dfrac{21}{z}} \qquad (4) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline z(x+y)&=& 63 \quad | \quad \mathbf{x=\dfrac{21}{z}} \\\\ z\left(\dfrac{21}{z}+y \right)&=& 63 \\\\ 21+zy &=& 63 \\\\ zy &=& 63-21 \\\\ \mathbf{zy} &=& \mathbf{42} \qquad (5) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \dfrac{(3)}{(5)}: & \dfrac{xy}{zy} &=& \dfrac{18}{42} \\\\ & \dfrac{x}{z} &=& \dfrac{3}{7} \quad | \quad \mathbf{x=\dfrac{21}{z}}\quad \text{or} \quad \mathbf{z=\dfrac{21}{x}} \\\\ & \dfrac{x}{\dfrac{21}{x}} &=& \dfrac{3}{7} \\\\ & \dfrac{x^2}{21} &=& \dfrac{3}{7} \\\\ & x^2 &=& \dfrac{3*21}{7} \\\\ & x^2 &=& 3*3 \\\\ & \mathbf{x} &=& \pm \mathbf{3} \\ \hline & \mathbf{y} &=& \mathbf{\dfrac{18}{x}} \\\\ & y &=& \dfrac{18}{\pm 3} \\\\ & \mathbf{y} &=& \mathbf{\pm 6 } \\ \hline & \mathbf{z} &=& \mathbf{\dfrac{21}{x} } \\\\ & z &=& \dfrac{21}{\pm 3} \\\\ & \mathbf{z} &=& \mathbf{\pm 7} \\ \hline & x^2+y^2+z^2 &=& (\pm 3)^2+(\pm 6)^2+(\pm 7)^2 \\\\ & &=& 9+36+49 \\\\ &\mathbf{ x^2+y^2+z^2} &=& \mathbf{94} \\ \hline \end{array}\)

 

laugh

Jul 1, 2020

2 Online Users