Ignoring air resistance, horizontal velocity is constant at v*cos(56°). Time is distance over velocity, so time to cross is t = 40/(v*cos(56°).
Change in vertical distance is given by -15 = v*sin(56°)*t - 9.8*t2/2 or
-15 = v*sin(56°)*40/(v*cos(56°)) - 9.8*(40/(v*cos(56°)))2/2
-15 = 40*tan(56°) - 9.8*(40/(v*cos(56°)))2/2
(9.8*(40/cos(56°))2/2)/(40*tan(56°) + 15) = v2
$${\mathtt{v}} = {\sqrt{{\frac{\left({\frac{{\mathtt{9.8}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{40}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{56}}^\circ\right)}}}\right)}^{{\mathtt{2}}}}{{\mathtt{2}}}}\right)}{\left({\mathtt{40}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{56}}^\circ\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{15}}\right)}}}} \Rightarrow {\mathtt{v}} = {\mathtt{18.369\: \!394\: \!701\: \!106\: \!074}}$$
or v ≈ 18.4m/s