Simplify the following:
5^(1/5) 25^(1/25) 125^(1/125) 625^(1/625)
625^(1/625) = (5^4)^(1/625):
5^(1/5) 25^(1/25) 125^(1/125)×5^(4/625)
125^(1/125) = (5^3)^(1/125):
5^(1/5) 25^(1/25)×5^(3/125)×5^(4/625)
25^(1/25) = (5^2)^(1/25):
5^(1/5)×5^(2/25)×5^(3/125)×5^(4/625)
5^(1/5)×5^(2/25)×5^(3/125)×5^(4/625) = 5^(1/5 + 2/25 + 3/125 + 4/625):
5^(1/5 + 2/25 + 3/125 + 4/625)
Put 1/5 + 2/25 + 3/125 + 4/625 over the common denominator 625. 1/5 + 2/25 + 3/125 + 4/625 = 125/625 + (25×2)/625 + (5×3)/625 + 4/625:
5^(125/625 + (25×2)/625 + (5×3)/625 + 4/625)
25×2 = 50:
5^(125/625 + 50/625 + (5×3)/625 + 4/625)
5×3 = 15:
5^(125/625 + 50/625 + 15/625 + 4/625)
125/625 + 50/625 + 15/625 + 4/625 = (125 + 50 + 15 + 4)/625:
5^((125 + 50 + 15 + 4)/625)
125 + 50 + 15 + 4 = 194:
5^(194/625)