Questions   
Sort: 
 #1
avatar
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Apr 16, 2023
 #1
avatar
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Apr 16, 2023
Apr 15, 2023
 #1
avatar
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Apr 15, 2023
 #1
avatar
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Apr 15, 2023
 #1
avatar
0

(a) The numbers from 1 to 99 include 9 one-digit numbers (1 to 9), 90 two-digit numbers (10 to 99), and a total of 99 numbers. The one-digit numbers have 1 digit each, the two-digit numbers have 2 digits each. Therefore, the total number of digits is:

9 × 1 + 90 × 2 = 9 + 180 = 189

Sam wrote down 189 digits in total.

(b) There are no 0's among the one-digit numbers. Among the two-digit numbers, there are 10 numbers that have 0 as the second digit (10, 20, 30, ..., 90). Therefore, out of the 99 numbers Sam wrote down, 10 have 0 as the second digit. The probability of choosing one of these numbers is:

P(choosing 0) = 10/99

(c) We can calculate the sum of the digits by adding the sum of the digits in each of the numbers. There are 9 one-digit numbers, which add up to 45. The two-digit numbers can be divided into two groups: those whose first digit is 1 (10 to 19) and those whose first digit is 2 to 9 (20 to 99). The sum of the digits in the first group is:

(1 + 0) + (1 + 1) + (1 + 2) + ... + (1 + 9) = 55

To calculate the sum of the digits in the second group, we first notice that there are 8 numbers whose first digit is 2, and each of these numbers contributes 2 to the sum of the digits. Similarly, there are 8 numbers whose first digit is 3, and each of these numbers contributes 3 to the sum of the digits, and so on up to 9 numbers whose first digit is 9, and each of these numbers contributes 9 to the sum of the digits. Therefore, the sum of the digits in the second group is:

8 × 2 + 8 × 3 + ... + 9 × 9 = 2(8 + 9) + 3(8 + 9) + ... + 9(8 + 9) = (8 + 9)(2 + 3 + ... + 9) = 45 × 44/2 = 990

Therefore, the total sum of the digits that Sam wrote down is:

45 + 55 + 990 = 1090

Apr 15, 2023
 #1
avatar
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Apr 15, 2023
 #1
avatar
0

(a) The left-hand side counts the number of ways to choose k elements from a set of n - 1 elements. The first term, C(n - 1, k - 1), counts the number of ways to choose k - 1 elements, and the second term, C(n - 1, k), counts the number of ways to choose k elements. To form the set of k elements in C(n, k), we simply add an element n to each of these two sets. So, C(n - 1, k - 1) + C(n - 1, k) = C(n, k).

(b) The left-hand side counts the number of ways to choose 0 to n elements from a set of n elements. For each positive integer i from 0 to n, C(n, i) counts the number of ways to choose i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n elements, which is 2^n.

(c) The left-hand side counts the number of ways to choose 0 to k elements from a set of n + k elements. Each term C(n + i, i) counts the number of ways to choose i elements from a set of n + i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of n + k elements, which is C(n + k + 1, k).

(d) The left-hand side counts the number of ordered pairs (X, Y) where X is a set of r elements selected from a set of m elements and Y is a set of r elements selected from a set of n elements. For each positive integer i from 0 to r, C(m, i) C(n, r - i) counts the number of ordered pairs where X has i elements and Y has r - i elements. The sum on the left-hand side is equivalent to counting the number of possible combinations of r elements from the set of m + n elements, which is C(m + n, r).

(e) The left-hand side counts the number of ordered pairs (a, b) of positive integers where 1 <= a, b <= n. The expression (n + 1)^2 - 2n - 1 counts the total number of ordered pairs of positive integers where 1 <= a, b <= n + 1 and then subtracts the ordered pairs (n + 1, n + 1) and (n + 1, i) for 1 <= i <= n, as well as (i, n + 1) for 1 <= i <= n. This gives us the total number of ordered pairs of positive integers where 1 <= a, b <= n.

(f) The left-hand side counts the number of ordered triples (a, b, c) of positive integers where 1 <= a, b, c <= n. The expression (n + 1)^3 - 3n^2 - 3n - 1 counts the total number of ordered triples of positive integers where 1 <= a, b, c <= n + 1 and then subtracts the ordered triples (n + 1, n + 1, n + 1), (n + 1, n + 1, i), (n + 1, i, n + 1), and (i, n + 1, n + 1) for 1 <= i <= n, as well as all ordered triples where at least one element is equal to n + 1. This gives us the total number of ordered triples of positive integers where 1 <= a, b, c <= n.

Apr 15, 2023

2 Online Users

avatar