How can the 100th term be 97 when at least half a dozen perfect squres, perfect qubes and perfect powers are excluded between 1 and 100 ?! Which means that the 100th term is greater than 100.
To the OP: Don't be lazy! List all the numbers between 1 and 100 and remove all perfect squares, perfect cubes and perfect powers and count what it remains. If you don't know what a perfect square or perfect cube or perfect power is, try this on your calculator: 1^2=1, 2^2=4, 3^2=9, 4^2=16, 5^2=25......10^2=100 and so on. 1, 4, 9, 16, 25......100 are perfect squares.
Do the same thing with perfect cubes: 1^3 =1, 2^3=8, 3^3=27, 4^3=64.......and so on. 1, 8, 27, 64.....are perfect cubes.
For perfect powers, generally all perfect squares and perfect cubes are perfect powers as well. However: 2^3=8, 2^4=16, 2^5 =32, 2^6=64........etc. Then: 3^1=3, 3^2=9, 3^3=27, 3^4=81....and then try 4^1=4, 4^2=16, 4^3=64......and so on.....Then try 5, 6, 7, 8, 9, 10......etc.