Let,
\(\displaystyle a = m^{2}-n^{2},\\\displaystyle b=2mn,\\ \displaystyle c=m^{2}+n^{2},\)
then a, b and c form a Pythagorean triple.
\(\displaystyle a^{2}+b^{2}=(m^{2}-n^{2})^{2}+(2mn)^{2} \\ \displaystyle =m^{4}+n^{4}-2m^{2}n^{2}+4m^{2}n^{2} \\ \displaystyle =m^{4}+n^{4}+2m^{2}n^{2}=(m^{2}+n^{2})^{2} \\ \displaystyle = c^{2}.\)
What we are looking for then are values of m and n such that m^2 + n^2 = 97.
m^2 = 97 - n^2, so try
n =1 , m^2 = 97 - 1 = 96, m not an integer,
n = 2, m^2 = 97 - 4 = 93 mnai,
n = 3, m^2 = 97 - 9 = 88 mnai,
n = 4, m^2 = 97 - 16 = 81, m = 9, got it.
So, a = 9^2 - 4^2 = 81 - 16 = 65,
b = 2*9*4 = 72.
Check, (for silly mistakes), a^2 + b^2 = 65^2 + 72 ^2 = 4225 + 5184 = 9409 = 97^2.