Google translate from Czech:
A right triangle has a perimeter of 24 cm. Its sides are in the ratio 3: 4: 5. What is the radius of the circle circumscribing the triangle?
First find where the perpendicular bisectors of two of the sides intersect. This is the centre of the circumscribing circle. A 3:4:5 circle is a well-known right-angled triangle, so the perpendicular bisectors of the two shorter sides meet at x = 3/2, y = 2 (where the triangle has vertices at (0, 0), (3, 0) and (3, 4)).
The radius is then given by r = √[(3/2 - 0)2 + (2 - 0)2] = 5/2
This answer should be doubled - see Melody's reply.
Google translate to Czech:
První zjistit, kde se kolmé bisectors na dvou stran protínají. To je centrem obalové kružnice.A3: 4: 5 kruh jea dobře známý pravoúhlého trojúhelníku, takže kolmé bisectors na obou kratších stranách setkat při x = 3/2, y = 2 (kdethe trojúhelník má vrcholy na (0, 0), (3, 0) a (3, 4)).
Poloměr je pak dána r = √ [(3/2 - 0) 2 + (2-0) 2] = 5/2
Tato odpověď by měla být dvojnásobná - viz odpověď Melody.
.