$$\\\sqrt{\sqrt{x-5} + x} = 5\\\\
\left[\sqrt{\sqrt{x-5} + x}\right]^2 = 5^2\\\\
\sqrt{x-5} + x = 25\\\\
\sqrt{x-5} = 25-x\\\\
(\sqrt{x-5})^2 = (25-x)^2\\\\
x-5= 625+x^2-50x \\\\
x^2-51x+630=0\\\\$$
$$\\\triangle=51^2-4*1*630=81\\\\
x=\frac{51\pm 9}{2}\\\\
x=\frac{51+ 9}{2}\qquad or\qquad x=\frac{51- 9}{2}\\\\
x=\frac{60}{2}\qquad or\qquad x=\frac{42}{2}\\\\
x=30 \qquad or\qquad x=21\\\\$$
Test
x=30
$$\\\sqrt{\sqrt{30-5}+30}\\
=\sqrt{5+30}\\
=\sqrt{35}\\
\ne5$$ x=30 is not a solution
Test x=21
$$\\\sqrt{\sqrt{21-5}+21}\\
=\sqrt{4+21}\\
=\sqrt{25}\\
=5\qquad excellent$$
So the answer is x=21