Questions   
Sort: 
 #1
avatar+118723 
+5

this is the second time you have posted this .

Please follow the instructions for reposting.   

http://web2.0calc.com/questions/instructions-on-reposting_1

 

NOW

2x-4y=8 rule of four

I would not answer this question because I have no idea what the rule of 4 is. 

this is the equation of a line.  There is no one solution.  Or more accurately, there is an infinite number of solutions.

Mar 5, 2015
 #2
avatar+26400 
+5

In a polar coordinate system ,O is the pole.The polar coordinates of A and B are(6,15) and (6,255) respectively.P is a moving point in the system such that PA=PB.If Q is a point lying on P such that OABQ is a rhombus , find polar coordinates of Q

$$\small{\text{$
\vec{Q}=\vec{A}+\vec{B}
$, because $|\vec{A}| = |\vec{B}| = 6 = r \quad$
Q lies on the bisectors of an angle by O
}}\\\\
\small{\text{
$\vec{A}=
\left(
\begin{array}{c}r\cdot \cos{(15)}\\r\cdot \sin{(15)}\end{array}
\right)
=
\left(
\begin{array}{c}6\cdot \cos{(15)}\\6\cdot \sin{(15)}\end{array}
\right)$
}}\\
\small{\text{
$\vec{B}=
\left(
\begin{array}{c}r\cdot \cos{(255)}\\r\cdot \sin{(255)}\end{array}
\right)
=
\left(
\begin{array}{c}6\cdot \cos{(255)}\\6\cdot \sin{(255)}\end{array}
\right)
$
}}\\\\
\small{\text{$
\vec{Q}=\vec{A}+\vec{B}
=
\left(
\begin{array}{c}6\cdot \cos{(15)}\\6\cdot \sin{(15)}\end{array}
\right)
+
\left(
\begin{array}{c}6\cdot \cos{(255)}\\6\cdot \sin{(255)}\end{array}
\right)
=
\left(
\begin{array}{c}
6\cdot \cos{(15)} + 6\cdot \cos{(255)}
\\ 6\cdot \sin{(15)} + 6\cdot \sin{(255)}
\end{array}
\right)
$}}\\\\
\small{\text{$
=
\left(
\begin{array}{c} 4.24264068712 \\ -4.24264068712 \end{array}
\right)
=
\left(
\begin{array}{c} \sqrt{18} \\ - \sqrt{18} \end{array}
\right)
$}}$$

polar coordinates of Q

$$\small{\text{
$
\vec{Q}= \left(\begin{array}{c} Q_x =\sqrt{18}\\ Q_y=-\sqrt{18} \end{arry} \right)
\qquad r = \sqrt{ Q_x^2 + Q_y^2 } = \sqrt{18+18} = 6
$
}}\\\\
\small{\text{
$
\tan{(\varphi)} = \dfrac{Q_y}{ Q_x} = \dfrac{-\sqrt{18}}{\sqrt{18}} = -1 \qquad\varphi = -45\ensurement{^{\circ}} $ or $ \varphi = 315\ensurement{^{\circ}} $
}}\\\\
\vec{Q}=(6, 315\ensurement{^{\circ}} )$$

.
Mar 5, 2015

0 Online Users