Questions   
Sort: 
 #5
avatar+11912 
0
Mar 5, 2015
 #3
avatar+11912 
0
Mar 5, 2015
 #2
avatar+13 
0
Mar 5, 2015
 #1
avatar+118723 
+5

I am not going to do this very elegently but perhaps i can do it.

First I am going to cut this square pyramid in half so I need a few more points.

X can be the midpoint of AB

Y is the midpoint of CD and

Z is the midpoint of EF

 

Consider triangle VXB       <VXB=90,      XB=5    VB=8    find VX

vx= sqrt( 64-25) = sqrt(39)

 

Now consider triangle  VXY          VX=VY=sqrt(39),    XY=8     Find <VXY (I'm going to call it $$\theta$$ )

 

$$\\39=39+64-(2*\sqrt{39}*8cos\theta)\\\\
64=16\sqrt{39}*cos\theta\\\\
4/\sqrt{39}=cos\theta\\\\$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{4}}}{{\sqrt{{\mathtt{39}}}}}}\right)} = {\mathtt{50.169\: \!945\: \!446\: \!964^{\circ}}}$$

 

so <VXY= 50.17°

 

NOW lets consider triangle XZY       <ZYX=30°,    <ZXY=50.17°      XY=8      Find XZ

$$\\\frac{XZ}{sin30}=\frac{8}{sin(180-30-50.17)}\\\\
\frac{XZ}{sin30}=\frac{8}{sin(98.3)}\\\\
XZ=\frac{8}{sin(98.3)}\times sin30\\\\$$

 

$${\frac{{\mathtt{8}}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{98.3}}^\circ\right)}}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{30}}^\circ\right)} = {\mathtt{4.042\: \!340\: \!325\: \!221\: \!254\: \!6}}$$

 

so    $$XZ\approx 4.04 cm$$

 

NOW I am going to consider triangle AVB

VX=sqrt(39),   XZ=4.04      so     VZ=sqrt(39)-4.04 = 2.205 cm approx

 

NOW triangle  EFV is similar to triangle  ABV     so

 

$$\\\frac{EF}{AB}=\frac{VZ}{VX}\\\\
\frac{EF}{10}=\frac{2.205}{\sqrt{39}}\\\\
EF=\frac{2.205}{\sqrt{39}}\times 10\\\\$$

 

$${\frac{{\mathtt{2.205}}}{{\sqrt{{\mathtt{39}}}}}}{\mathtt{\,\times\,}}{\mathtt{10}} = {\mathtt{3.530\: \!825\: \!791\: \!402\: \!171\: \!3}}$$

 

So if I have not done anything incorrectly the answer is  EF= 3.53cm    (approximately)

 

BLAST, I FOUND THE WRONG ONE.  BUMMER!!!          (ノ °益°)ノ 彡

 

nevermind:

$$\\\frac{VE}{VA}=\frac{VZ}{VX}\\\\
\frac{VE}{8}=\frac{2.205}{\sqrt{39}}\\\\
VE=\frac{2.205}{\sqrt{39}}\times 8\\\\$$

 

$${\frac{{\mathtt{2.205}}}{{\sqrt{{\mathtt{39}}}}}}{\mathtt{\,\times\,}}{\mathtt{8}} = {\mathtt{2.824\: \!660\: \!633\: \!121\: \!737}}$$

 

AE=AV-EV

AE=8-2.825

$${\mathtt{8}}{\mathtt{\,-\,}}{\mathtt{2.825}} = {\frac{{\mathtt{207}}}{{\mathtt{40}}}} = {\mathtt{5.175}}$$

 

AE is approx 5.18 cm

Mar 5, 2015
 #454
avatar+118723 
+3

@@ End of Day Wrap   Thurs 5/3/15   Sydney, Australia    Time 11:10 pm    ♪ ♫

 

G'day all,

 

This day our magnificant answerers were Alan, Rodala, Sasini, SmartCookie, TheJonyMyster, Labby, Geno3141, cmoney, Mellophonist, Heureka, Krisivier and Bertie.  Thanks you, you are all wonderful.

 

Interest posts:

 

1)     Changing the subject of a formula       Middle level students should try it.       Thanks Alan.  

2)     Simultaneous equations            Thanks Alan

3)     A slightly unusual quadratic         Thanks Alan

4)     Population growth and decay      Thanks Geno.

5)     Probability                                 Thanks Alan.

6)     Permutations - I have no idea how to do this one.  Not answered yet. 

7)     Find SA when given V and r of a cylinder    Thanks CPhill

8)    Polar co-ordinates              Thanks Alan and Heureka, and Bertie

9)    This geometry one looks interesting         No answer yet.

10)  Finding the 4th vertex of a parallelogram.     Thanks CPhill and Heureka

11)  Normal distribution                 Melody

   

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 5, 2015
 #261
avatar+118723 
0

Fri 6/3/15

1)    3D Geometry.        Melody

2)    What is the co for in cosine?        Melody

3)    Permutation, a bit tricky.              Melody

4)    Finding average speed      Thanks Alan

5)    Selections.  Everyone can try this question.  It is very cool         Melody

6)    Counting.   This is another counting one that everyone can try.  It is just a matter of being methodical.  Thanks Heureka.

7)    Negative indices     What do you do with them?            Thanks CPhill

8)    Logarithm equation               Melody

9)    Scaling.     We have has quite a few of these lately but the concept is a really good one for everyone to understand.      Thanks CPhill.

10)    Average and instantaneous velocity         Melody

11)    Ratio of angles to sides of triangle           Thanks  Chris

12)    What is a year ?                                 Thanks Heureka

13)    Finding the exponential function             Thanks Geno

14)    Ratios with simultaneous equations         Melody

15)    Simultaneous Equations by elimination.    Heureka has laid this out beautifully.   Thank you

 

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 5, 2015
 #2
avatar+118723 
0
Mar 5, 2015
 #1
avatar+10 
+8

The number π is a mathematical constant, the ratio of a circle's circumference to its diameter, commonly approximated as 3.14159. It has been represented by the Greek letter "π" since the mid-18th century, though it is also sometimes spelled out as "pi" (/p/).

Mar 5, 2015

0 Online Users