I have trouble remembering \cdot because it means nothing to me. Do you think the c stands for centre ?
Are there any other types of dots that you can have?
horizontal, center (c): \cdots $$A_{11}\cdots A_{1n}$$
horizontal, down: \ldots $$A \ldots A$$
Example:
_pF_q(a_1, \ldots, a_p; c_1, \ldots, c_q; z) =
\sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(c_1)_n \cdots (c_q)_n} \frac{z^n}{n!}
$$_pF_q(a_1, \ldots, a_p; c_1, \ldots, c_q; z) =
\sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(c_1)_n \cdots (c_q)_n} \frac{z^n}{n!} \,$$
diagonal (d) : \ddots $$\ddots$$
vertical(v) : \vdots $$\vdots$$
The most common dot symbols used in math notation are available in LaTeX as well.
Name | Symbol | Command |
---|---|---|
Middot / Centered dot | ⋅ $$\cdot$$ | \cdot |
Horizontal Dots / Centered dots | ⋯ $$\cdots$$ | \cdots |
Vertical Dots | ⋮ $$\vdots$$ | \vdots |
Diagonal Dots | ⋱ $$\ddots$$ | \ddots |
Lower Dots | … $$\ldots$$ | \ldots |
Example: ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ 11⋮1 00⋮0 ⋯⋯⋱0 00⋮0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ $$\begin{bmatrix} | \begin{bmatrix} 1 & 0 & \cdots & 0\\ 1 & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 \end{bmatrix} |
double (d): \ddot $$\ddot{a}$$
single: \dot $$\dot{a}$$
Thanks Chris,
I like this question and your answer.
I do rations in rather weird ways. For basic quesions my way is REALLY easy.
BUT for harder questions I often get in a mess.
This is how I tacked this one.
Orange | orange and wter | water | lemonade |
2*(3/7) | 5*(3/7) | ||
7*(3/7) | 4 | ||
3 | 4 | ||
6/7 | 15/7 | 4 |
So the ratio of orange juice to lemonade is 6/7 : 4 = 6:28 = 3:14