Here's another approach
16^2*(16^-3)^2*4^38
--------------------------- = 16^x what is x
(16^(-1)*2^12)
Notice that 2^12 = (2^2)^6 = 4^6
And 4^38 / 2^12 = 4^38 / 4^6 = 4^32 = (4^2)^16 = 16^16 ..... so we have
[16^2 * [ (16)^(-3)]^2 * 16^16] / 16^(-1) =
[16^(2) [16^(-6) * 16^16] / 16^(-1) =
16^(12) / 16^(-1) =
16^13 so x must = 13
