Calculating the price of bond is a ralatively involved process. First, you have to figure out the the price of a stream of coupons. Second you have to find out the price of the par value of the bond at maturity, which is generally taken as $100. Then you add the two together to get the price of the bond.
But, what makes it even more complicated is the fact that the bond has to be priced on a specific date, i.e., the date of purchase, which is sometimes called "settlement date", which in this case is Monday, Nov. 2, 2015. So a special calculation has to be made for this odd period, from the last coupon date, June 1, 2015 to Nov. 2, 2015.
For this purpose, two different formulae are used to obtain the price of the bond: For the price of the coupons, this formula is used: PV=C[((1 + i)^n - 1)/((1 + i)^n.i)]. C=$4.00 par value of the coupon.
For the price of the par value of the bond at maturity, which is generally taken to be $100.00, this common formula is used: PV=100(1 + i)^-n. Where i=3/2=1.5, and n=number of semi-annual periods left in the life of the bond from Nov. 2, 2015 to June 1, 2030.
Putting all this together, it will be seen that the price of the bond on the purchase date of Nov. 2, 2015 will come to =$111.737 per $100. And the accrued interest=$1.683 per $100. This is for the period of June 1, 2015 to Nov. 2, 2015.
So, the total price of the bond is=$111.737 + $1.683=$113.420 per $100.00.