Questions   
Sort: 
 #2
avatar+118725 
+5

 

I know this question is old but I wanted to look at it and this is the first chance I have had.

Alan has given a great answer but I wanted to do it without using a computer graphing program to help me.

(I did cheat and use some of Alan's results but that was just to save the necessity of number crunching)

 

 

\(f(x)=2xsinx   \qquad   0\le x\le \pi\\ f'(x)=2(sinx+xcosx)\\ f''(x)=2(cosx+cosx-xsinx) = 4cosx-2xsinx\\ \mbox{Now turning points will occur when f'(x)=0}\\ 2(sinx+xcosx)=0\\ sinx+xcosx=0\\ xcosx=-sinx\\ x=-tanx\\ \mbox{Now if I plot y=x and y=tanx then the point of intersection will be where this is true.}\\ \mbox{I can do a rough graph of this without the help of any graphing calculators..}\\ \mbox{I can see that the point of intersection is between } x=\pi/2 \;\;and x=\pi\\ \mbox{So like Alan said x=2 is a good first estimate.} \)

 

 

Now you use Newton's method to get closer and closer approximations.

I can never remember the formula so I have to derive it each time but with a little practice this is easy to do.

 

anyway, it is

\(\boxed{ x_1=x_0-\frac{f(x_0)}{f'(x_0)} }\\ Where \;\;x_0 \;\;\mbox{is the first estimate and }x_1 \mbox{ is the next estimate}\)

 

This is tedious but it can certainly be done by hand.   (you only need to do it 3 times.)

Anyway, Alan got the answer x=2.0288158.

 

Now you do need to ascertain what kind of a stationary point this is 

so you need to plug this valu of x into the second derivative.

It will give you   f''(2.0288158) < 0 

I have not done it because I cannot be bothered but I know this is true because Alan has kinly plotted f(x)for me and I can see that the concavity of the curve at the stat point is negative.

 

There you go.  That is how you do it without the need of graph aids.

 

I have graphed it just to help you understand what I was tallking about.  

I did graph it too but only roughly with a pen and paper.

 

https://www.desmos.com/calculator/3z64adpobn

 

 

Nov 11, 2015
 #4
avatar+26404 
+20

f(1)=20 , f(n)=3*f(n-1)-60 find the 10th term

 

\(\small{ \begin{array}{lrcl} & f_n &=& 3\cdot f_{n-1} - 60 \qquad a=3 \qquad c=-60\\ \text{or general}: & f_n &=& a\cdot f_{n-1} + c \\ \hline \\ & f_1 &=& a\cdot f_0 + c \\\\ & f_2 &=& a\cdot f_1 + c \\ & f_2 &=& a\cdot [a\cdot f_0 + c] + c \\ & f_2 &=& a^2\cdot f_0 + a\cdot c + c \\ & f_2 &=& a^2\cdot f_0 + c\cdot(1+a) \\\\ & f_3 &=& a\cdot f_2 + c \\ & f_3 &=& a\cdot [a^2\cdot f_0 + c\cdot(1+a)] + c \\ & f_3 &=& a^3\cdot f_0 + a\cdot c\cdot(1+a) + c \\ & f_3 &=& a^3\cdot f_0 + c\cdot(a+a^2) + c \\ & f_3 &=& a^3\cdot f_0 + c\cdot(1+a+a^2) \\\\ & f_4 &=& a\cdot f_3 + c \\ & f_4 &=& a\cdot [a^3\cdot f_0 + c\cdot(1+a+a^2)] + c \\ & f_4 &=& a^4\cdot f_0 + a\cdot c\cdot(1+a+a^2) + c \\ & f_4 &=& a^4\cdot f_0 + c\cdot(a+a^2+a^3) + c \\ & f_4 &=& a^4\cdot f_0 + c\cdot(1+a+a^2+a^3) \\\\ \hline \text{general solution}: & f_n &=& a^n\cdot f_0 + c\cdot (1+a+a^2+a^3+...+ a^{n-1}) \\ & && 1+a+a^2+a^3+...+ a^{n-1} = \frac{1-a^n}{1-a}\\ & f_n &=& a^n\cdot f_0 + c\cdot \frac{1-a^n}{1-a} \\ & f_n &=& a^n\cdot f_0 + c\cdot \left( \frac{1}{1-a} - \frac{a^n}{1-a} \right) \\ & f_n &=& a^n\cdot f_0 + c\cdot\frac{1}{1-a} - c\cdot\frac{a^n}{1-a} \\ & f_n &=& a^n\cdot f_0 - c\cdot\frac{a^n}{1-a} + c\cdot\frac{1}{1-a} \\ & && \boxed{~ \begin{array}{lrcl} & f_n &=& a^n\cdot \left( f_0 - c\cdot\frac{1}{1-a} \right) + c\cdot\frac{1}{1-a} \\ & f_n &=& x + \beta \cdot a^n \\ &&& x = c\cdot\frac{1}{1-a} \\ &&& \beta = f_0 - c\cdot\frac{1}{1-a} \\ &&& \beta = f_0 - x \end{array} ~}\\ \hline \\ \text{general}: & f_n &=& a\cdot f_{n-1} + c \\ \text{general solution}: & f_n &=& x + \beta \cdot a^n \qquad x = \frac{c}{1-a} \qquad \beta = f_0 - x \\\\ & f_n &=& 3\cdot f_{n-1} -60 \qquad a=3 \qquad c=-60\\\\ & f_1 &=& 3 \cdot f_0 - 60 \\ & 3 \cdot f_0 &=& f_1 + 60 \\ & f_0 &=& \frac{ f_1 + 60 } {3} \qquad f_1 = 20\\ & f_0 &=& \frac{ 20 + 60 } {3} \\ & f_0 &=& \frac{ 80 } {3} \\\\ & x &=& \frac{c}{1-a} \\ & x &=& \frac{-60}{1-3} \\ & x &=& \frac{-60}{-2} \\ & x &=& 30 \\ \\ & \beta &=& f_0 - x \\ & \beta &=& \frac{ 80 } {3} - 30 \\ & \beta &=& -\frac{ 10 } {3} \\\\ & f_n &=& 30 -\frac{ 10 } {3} \cdot a^n \\ & f_{10} &=& 30 -\frac{ 10 } {3} \cdot 3^{10} \\ & f_{10} &=& 30 -\frac{ 10 } {3} \cdot 59049 \\ & f_{10} &=& 30 -196830\\ & \mathbf{f_{10} }& \mathbf{=} &\mathbf { -196800 } \end{array} }\)

laugh

.
Nov 11, 2015

0 Online Users