Questions   
Sort: 
 #2
avatar+26404 
+10

Find sin 2x, cos 2x, and tan 2x from the given information. tan x = −1/2 , cos x > 0

 

 

In trigonometry, the tangent half-angle formulas relate the tangent of one half of an angle to trigonometric functions of the entire angle. They are as follows:

\(\begin{array}{rcl} \boxed{~ \begin{array}{rcl} \sin{(\alpha)} &=& \dfrac{ 2\cdot \tan{\frac{\alpha}{2} } } { 1 + \tan^2{\frac{\alpha}{2} } } \\\\ \cos{(\alpha)} &=& \dfrac{ 1 - \tan^2{\frac{\alpha}{2} } } { 1 + \tan^2{\frac{\alpha}{2} } }\\\\ \tan{(\alpha)} &=& \dfrac{ 2\cdot \tan{\frac{\alpha}{2} } } { 1 - \tan^2{\frac{\alpha}{2} } } \end{array} ~} \quad \text{ or } \quad \boxed{~ \begin{array}{rcl} \sin{(2\alpha)} &=& \dfrac{ 2\cdot \tan{\alpha } } { 1 + \tan^2{\alpha } } \\\\ \cos{(2\alpha)} &=& \dfrac{ 1 - \tan^2{\alpha } } { 1 + \tan^2{\alpha } }\\\\ \tan{(2\alpha)} &=& \dfrac{ 2\cdot \tan{\alpha } } { 1 - \tan^2{\alpha } } \end{array} ~} \end{array}\)

 

\(\begin{array}{rcl} \sin{(2x)} &=& \dfrac{ 2\cdot \tan{x } } { 1 + \tan^2{x } } \\ \sin{(2x)} &=& \dfrac{ 2\cdot ( -\frac12 ) } { 1 + ( -\frac12 )^2 } \\ \sin{(2x)} &=& \dfrac{ -1 } { 1 + \frac14 } \\ \mathbf{\sin{(2x)}} &\mathbf{=}& \mathbf{-\frac45}\\ \\ \cos{(2x)} &=& \dfrac{ 1 - \tan^2{x } } { 1 + \tan^2{x } }\\ \cos{(2x)} &=& \dfrac{ 1 - \frac14 } { 1 + \frac14 }\\ \cos{(2x)} &=& \frac34 \cdot \frac45 \\ \mathbf{\cos{(2x)}} &\mathbf{=}& \mathbf{\frac35} \\ \\ \tan{(2x)} &=& \dfrac{ 2\cdot \tan{x } } { 1 - \tan^2{x } } \\ \tan{(2x)} &=& \dfrac{ 2\cdot ( -\frac12 ) } { 1 - ( -\frac12 )^2 }\\ \tan{(2x)} &=& \dfrac{ -1 } { 1 - \frac14 }\\ \mathbf{\tan{(2x)}} &\mathbf{=}& \mathbf{- \dfrac43}\\ \end{array}\)

 

laugh

Nov 17, 2015
 #1
avatar
+5
Nov 17, 2015

0 Online Users