Questions   
Sort: 
 #1
avatar+26404 
+10

sin(3x)=cos(5x)

how to solve this

 

\(\small{ \begin{array}{rcl} &\text{Formula } \\ &\boxed{~ \begin{array}{rcl} \cos{(A)}-\cos{(B)} &=& -2 \cdot \sin{(\frac{A+B}{2})} \cdot \sin{(\frac{A-B}{2})}\\ \end{array}\\ ~}\\\\ \end{array}\\ \begin{array}{lrcll} & \sin{(3x)}&=& \cos{(5x)} \\ & \sin{(3x)}- \cos{(5x)}&=& 0 \qquad | \qquad \sin{(3x)}=\cos{( \frac{\pi}{2}-3x )} \\ & \cos{( \underbrace{ \frac{\pi}{2}-3x }_{=A} )}- \cos{( \underbrace{ 5x }_{=B} )}&=& 0 \\ & \cos{(\frac{\pi}{2}-3x )}- \cos{( 5x )} &=& -2\cdot \sin{(\frac{\frac{\pi}{2}-3x+5x }{2})} \cdot \sin{(\frac{\frac{\pi}{2}-3x-(5x) }{2})} \qquad \text{Formula}\\ & &=& -2\cdot \sin{(\frac{\frac{\pi}{2}+2x }{2})} \cdot \sin{(\frac{\frac{\pi}{2}-8x }{2})}\\\\ & \mathbf{ \sin{(3x)}- \cos{(5x)} } & \mathbf{=} & \mathbf{ -2\cdot \sin{ ( \frac{\pi}{4}+x) } \cdot \sin{( \frac{\pi}{4}-4x)} = 0 }\\\\ & -2\cdot \sin{ ( \frac{\pi}{4}+x) } \cdot \sin{( \frac{\pi}{4}-4x)} &=& 0 \qquad | \qquad : -2\\ & \underbrace{ \sin{ ( \frac{\pi}{4}+x) } }_{=0} \cdot \underbrace{ \sin{( \frac{\pi}{4}-4x)} }_{=0}&=& 0\\\\ \hline 1. \text{ Solution} & \sin{ ( \frac{\pi}{4}+x ) } &=& 0 \\ & \frac{\pi}{4}+x &=& \arcsin{ ( 0 ) } \pm 2k\cdot \pi \\ & \frac{\pi}{4}+x &=& \pm 2k\cdot \pi \\ & \mathbf{x} &\mathbf{=}&\mathbf{ - \frac{\pi}{4} \pm 2k\cdot \pi } \qquad k \in Z\\ \hline 2. \text{ Solution} & \sin{ ( \pi - ( \frac{ \pi}{4}+x ) ) } &=& 0 \\ & \sin{ ( \frac{3 \pi}{4}-x ) } &=& 0 \\ & \frac{3 \pi}{4}-x &=& \arcsin{ ( 0 ) } \pm 2k\cdot \pi \\ & \frac{3 \pi}{4}-x &=& \pm 2k\cdot \pi \\ & \mathbf{x} &\mathbf{=}& \mathbf{\frac{3 \pi}{4} \pm 2k\cdot \pi } \qquad k \in Z\\ \hline 3. \text{ Solution} & \sin{ ( \frac{\pi}{4}-4x ) } &=& 0\\ & \frac{\pi}{4}-4x &=& \arcsin{ ( 0 ) } \pm 2k\cdot \pi \\ & \frac{\pi}{4}-4x &=& \pm 2k\cdot \pi \\ & 4x &=& \frac{\pi}{4} \pm 2k\cdot \pi \\ & \mathbf{x} &\mathbf{=}& \mathbf{\frac{\pi}{16} \pm k\cdot \frac{\pi}{2} } \qquad k \in Z\\ \hline 4. \text{ Solution} & \sin{ ( \pi - ( \frac{ \pi}{4}-4x ) ) } &=& 0\\ & \sin{ ( \frac{3\pi}{4}+4x ) } &=& 0\\ & \frac{3\pi}{4}+4x &=& \arcsin{ ( 0 ) } \pm 2k\cdot \pi \\ & \frac{3\pi}{4}+4x &=& \pm 2k\cdot \pi \\ & 4x &=& -\frac{3\pi}{4} \pm 2k\cdot \pi\\ & \mathbf{x} &\mathbf{=}& \mathbf{ -\frac{3\pi}{16} \pm k\cdot \frac{\pi}{2} } \qquad k \in Z\\ \end{array} }\)

 

laugh

Nov 17, 2015
 #32
avatar+118725 
+10

@@ What is Happening?  [Wrap4]   Tues 17/11/15   Sydney, Australia Time 8:32pm  ♪ ♫

 

Good evening to you all,

 

We have had some wonderful answers from Meghara, CPhill, Heureka, DoctorNewton, Omi67, LordEnedar, Rom, Alan and TMga2yb.  A big thank you to each of you.  laugh

 

Forum Issues:

I have sent a letter to Mr. Massow today discussing the new forum and addressing some of the problems that we are having. Mr. Massow is the owner and developer of web2.0calc.com. In particular I talked about the access problems that some people are experiencing and our need for a reliable search function to search for a member's posts. I did discuss other issues as well and 

I gave Mr. Massow the address of the forum thread where various issues have been discussed over this past week.  I will let you know if there are any further developments in regards to this.

 

Interest Posts:

If you ask or answer an interesting question, you can private message the address to me (with copy and paste) and I will include it.  Of course only members are able to do this.  I quite likely will not see it if you do not show me.  

 

1) Calling our comedian TROLLS to return.    Continued.  

     Please, this place needs an injection of comedy.    cheeky

    http://web2.0calc.com/questions/the-search-function-really-sucks#r4

2) Scientific notation and the calculator. I learned something here  Thanks guest.    http://web2.0calc.com/questions/how-do-i-use-the-scientific-calculator-while-calculating-exponents     

3) Perpendicular of a given line through a point.    Thanks Heureka    http://web2.0calc.com/questions/perpendicular-lines_4#r2

4) A Mellie Geometry question continued.    Thanks CPhill

   http://web2.0calc.com/questions/points-s-and-t-are-on-side-cd-of-rectangle-abcd-such-that-as-and-at-trisect-angle-dab-if-ct-3-and-ds-6-then-what-is-the-area-of-abcd#r3

5) Playing with cubics.   For everyone.

       http://web2.0calc.com/questions/if-a-3-b-3-c-3-33

6) Simultaneous questions. Problem question.

     http://web2.0calc.com/questions/age-problem-please-help

7) Using graphs to solve equations   Thanks Alan

    http://web2.0calc.com/questions/don-t-you-just-hate-questions-like-this

8) I was trolling, bad choice of words, I was looking though the most viewed posts and look what I found.  I must be the last ones on the whole forum to see it!  It was posted while I was oversees.   It's a beauty.  I want to look at it in fine detail as soon as I get a chance.   Thanks Heureka  angel

    http://web2.0calc.com/questions/physics_96009

 

 

                                                     ♪ ♫      Melody    ♪ ♫                                                

Lantern thread:

Nov 17, 2015
 #1
avatar+6252 
+5
Nov 17, 2015
 #2
avatar+118725 
0
Nov 17, 2015

0 Online Users