Hi All,
I was intrigued by the answer Melody gave and would like to comment on it. See the approach of diving people into groups of same sizes is a pretty standard one. For example if you want ot divide a group of 8 people into pairs (i.e. all equal sizes) the standard approach shall be 8!/(((2!)^4)*4!), i.e divide 8! by 2!*2!*2!*2! and multiply the whole with 1/4! (since there are 4 groups of equal sizes) and it returns the same answer as 105. This can be used for anything. (3N as well). Say N people need to be distributed in 2 groups of 2 and 1 group of 3, then it is N!/2!*2!*3!*2! (i.e. 2! -> since 2 items belon to one group, 2! -> since 2 items belon to one group,3! -> since 2 items belon to one group, 2! -> since 2 groups are identical in size.)
Now that concept out of the way, the thing that intrigued me is its application in geometrical figures, like the one discussed. I think it has happened because in such a scenario we fix one group namely AB and then form 3 paired groups, and since it is a square all the 8 arrangements will be identical, hence giving us the formula (2k-1)!/2^k-1*3!
i.e. (2k)!/(2k*((2!)^3)*3!)
I think that is the case. But definitely for sure such a formula wouldnt work out in other geometrical figures or if the numbers werent 8 for example, i.e we have 6 persons and there are 8 places.