Questions   
Sort: 
 #2
avatar
0
Nov 25, 2015
 #1
avatar+443 
0
Nov 25, 2015
 #2
avatar+443 
0
Nov 25, 2015
 #3
avatar
+5
Nov 25, 2015
 #1
avatar
+5
Nov 25, 2015
 #1
avatar+26404 
+25

In a triangle ABC, AB = AC. D is the mid-point of BC, E is the foot of the perpendicular drawn from D to AC, and F is the mid-point of DE. Prove that AF is perpendicular to BE.

 

I. Definition:

\(\boxed{~ \begin{array}{lcl} \vec{a}= \vec{BC}\qquad |\vec{a}|= a \\ \vec{b}= \vec{AC}\qquad |\vec{b}|= b\qquad \vec{b}\cdot \vec{b} = b^2 \\ \quad \vec{a}\cdot \vec{b} = \frac{a}{2}\cdot a\\ \quad \vec{a}\cdot \vec{b} = \frac{a^2}{2}\\ \hline \vec{d}=\vec{AD}\\ \vec{d}=\vec{b}-\frac12 \vec{a} \\ \end{array} ~} \boxed{~ \begin{array}{lcl} \vec{f}=\vec{AE}\\ \vec{f}= \frac{ (\vec{b}\cdot\vec{d}) } {b^2} \vec{b}\\ \vec{f}= \frac{ (\vec{b}\cdot \left(\vec{b}-\frac12 \vec{a} \right) ) } {b^2} \vec{b}\\ \vec{f}= \frac{ (b^2 - \frac{ (\vec{a}\cdot \vec{b}) }{2} ) } {b^2} \vec{b}\\ \vec{f}= \frac{ (b^2 - \frac{ a^2 }{4} ) } {b^2} \vec{b}\\ \vec{f}= \left(1 - \frac{ a^2 }{4b^2} \right) \cdot \vec{b}\\ \end{array} ~}\\\)

\(\boxed{~ \begin{array}{lcl} \vec{e}=\vec{ED}\\ \vec{e}=\vec{d}-\vec{f}\\ \vec{e}=\left( \vec{b}-\frac12 \vec{a} \right) -\vec{f}\\ \frac{\vec{e}}{2}=\left( \vec{b}-\frac12 \vec{a} \right)\frac12 -\frac12 \vec{f}\\ \vec{AF} = \frac{\vec{e}}{2}+\vec{f} = \left( \vec{b}-\frac12 \vec{a} \right)\frac12 -\frac12 \vec{f}+\vec{f}\\ \vec{AF} = \left( \vec{b}-\frac12 \vec{a} \right)\frac12 +\frac12 \vec{f}\\ \vec{AF} = \left( \vec{b}-\frac12 \vec{a} \right)\frac12 +\frac12 \left(1 - \frac{ a^2 }{4b^2} \right) \cdot \vec{b}\\ \vec{AF} = \vec{b} \left[ \frac12 +\frac12 \cdot \left( 1 - \frac{ a^2 }{4b^2} \right) \right] -\frac14 \cdot \vec{a} \\ \vec{AF} = \vec{b} \left( \frac12 +\frac12 - \frac{ a^2 }{8b^2} \right) -\frac14 \cdot \vec{a} \\ \vec{AF} = \vec{b} \left( 1 - \frac{ a^2 }{8b^2} \right) -\frac14 \cdot \vec{a} \\ \end{array} ~} \boxed{~ \begin{array}{lcl} \vec{BE} = \vec{a}-(\vec{b}-\vec{f})\\ \vec{BE} = \vec{a}-\vec{b}+\vec{f}\\ \vec{BE} = \vec{a}-\vec{b}+\left(1 - \frac{ a^2 }{4b^2} \right) \cdot \vec{b}\\ \vec{BE} = \vec{a}-\vec{b}+ \vec{b} - \left(\frac{ a^2 }{4b^2} \right) \cdot \vec{b}\\ \vec{BE} = \vec{a} - \left(\frac{ a^2 }{4b^2} \right) \cdot \vec{b}\\ \end{array} ~}\)

 

II. Prove that AF is perpendicular to BE.

\(\boxed{~ \begin{array}{lcl} \vec{AF} = -\frac14 \cdot \vec{a} + \vec{b} \left( 1 - \frac{ a^2 }{8b^2} \right) \\ \vec{BE} = \vec{a} - \vec{b} \left(\frac{ a^2 }{4b^2} \right)\\ \text{Perpendicular, if } \ (~\vec{AF}\cdot \vec{BE}~) = 0 \\ \hline \\ (~\vec{AF}\cdot \vec{BE}~) = \left ( -\frac14 \cdot \vec{a} + \vec{b} \left( 1 - \frac{ a^2 }{8b^2} \right) \right) \cdot \left( \vec{a} - \vec{b} \left(\frac{ a^2 }{4b^2} \right) \right) \\ (~\vec{AF}\cdot \vec{BE}~) = -\frac14 \cdot \vec{a} \cdot \vec{a} + \frac14 \cdot \vec{a} \cdot \vec{b} \left(\frac{ a^2 }{4b^2} \right) + \vec{b} \cdot \vec{a} \left( 1 - \frac{ a^2 }{8b^2} \right) - \vec{b}\cdot \vec{b} \left( 1 - \frac{ a^2 }{8b^2} \right) \left(\frac{ a^2 }{4b^2} \right)\\ \qquad \vec{a} \cdot \vec{a} = a^2 \qquad \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} =\frac{a^2}{2} \qquad \vec{b}\cdot \vec{b}=b^2 \\ (~\vec{AF}\cdot \vec{BE}~) = -\frac{ a^2 }{4} + \frac14 \cdot \frac{a^2}{2} \left(\frac{ a^2 }{4b^2} \right) + \frac{a^2}{2} \left( 1 - \frac{ a^2 }{8b^2} \right) - b^2 \left( 1 - \frac{ a^2 }{8b^2} \right) \left(\frac{ a^2 }{4b^2} \right)\\ (~\vec{AF}\cdot \vec{BE}~) = -\frac{ a^2 }{4} + \frac{a^4}{32b^2} + \frac{a^2}{2} - \frac{ a^4 }{16b^2} - \left( 1 - \frac{ a^2 }{8b^2} \right) \left(\frac{ a^2 }{4} \right)\\ (~\vec{AF}\cdot \vec{BE}~) = -\frac{ a^2 }{4} + \frac{a^4}{32b^2} + \frac{a^2}{2} - \frac{ a^4 }{16b^2} -\frac{ a^2 }{4}+ \frac{ a^4 }{32b^2} \\ (~\vec{AF}\cdot \vec{BE}~) = -\frac{ a^2 }{4}-\frac{ a^2 }{4}+ \frac{a^2}{2} + \frac{a^4}{32b^2} + \frac{ a^4 }{32b^2} - \frac{ a^4 }{16b^2} \\ \color{red }(~\vec{AF}\cdot \vec{BE}~) \color{black }= -\frac{ a^2 }{2}+ \frac{a^2}{2} + \frac{a^4}{16b^2} - \frac{ a^4 }{16b^2} \color{red }= 0\\ \end{array} ~}\)

 

laugh

Nov 25, 2015
 #1
avatar+26404 
+15

sin(x+15 degree) = 3 cos( x-15 degree)

 

\(\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }\)

 

laugh

Nov 25, 2015

1 Online Users