Questions   
Sort: 
Apr 10, 2014
 #12
avatar+330 
0
CPhill:



Maybe I'm reading too much into this problem, but I claim that we don't actually know that BC is at a right angle to AB
I guess my point is that we could have a right triangle, but as you see, it might not have to be. Note that ∠BAC is greater than a right angle
In hindsight, the problem only "works" if we assume that AB is perpendicular to BC.......and since we're not given any other information, then DavidQD and Alan would certainly be correct !!!



[center] Definition and Clarification[/center]

By definition a spherical segment is the “cutting” of a sphere with a pair of parallel planes. In the question, one plane is specified and passes through point (B) and the other is implied and passes through point (A).

On a sphere, the “Z” axis divides the center of the segment(s) from point (P) to the antipodal point (-P), where the end points for both lines lie on the surface of the sphere.

For clarity, define (P 0) and (-P 0) as the implied plane passing through Point (A), the center of the sphere. Define (P 1) and (-P 1) as the explicitly described plane passing through point (B), the center of the circle.

To restate: Points (A) and (B) are on the common Z-axis, which is the center of the two parallel planes, segmenting the sphere. Because the planes (lines) are parallel, the AB segment of the Z-axis is perpendicular to both lines. This explicitly defines a 90-degree angle as one of the angles to the triangle.

CPhill’s graphic depicts the intersecting point on the Z-axis, and not the angle at which the plane intersects the Z-axis.

One method to help visualize this: look at the sphere’s presents as “creating” the circle(s) in the plane(s). The concentric circles are always created in planes parallel to the plane that intersects the center of the sphere.
~~D~~
Apr 10, 2014

1 Online Users