A square graphed on the coordinate plane has a diagonal with endpoints E(2,3) and F(0,-3). What are the coords of the endpoints of the other diagonal?
1. Diagonal: \(E (x_E=2,y_E=3)\) and \(F(x_F=0,y_F=-3)\).
What are the coords of the endpoints of the other diagonal \(G(x_G,y_G)\) and \(H(x_H,y_H)\).
\(\begin{array}{rcll} \binom{x_G}{y_G} &=& \binom{x_F}{y_F} +\frac12 \cdot \binom{x_E-x_F}{y_E-y_F} + \frac12 \cdot \binom{-(y_E-y_F)}{x_E-x_F} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\frac12 \cdot \binom{2-0}{3-(-3)} + \frac12 \cdot \binom{-(3-(-3))}{2-0} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\frac12 \cdot \binom{2}{6} + \frac12 \cdot \binom{-6}{2} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\binom{\frac12\cdot 2}{\frac12\cdot 6} + \binom{\frac12\cdot (-6)}{\frac12\cdot 2} \\ \binom{x_G}{y_G} &=& \binom{0}{-3} +\binom{1}{3} + \binom{-3}{1} \\ \binom{x_G}{y_G} &=& \binom{0+1-3}{-3+3+1} \\ \binom{x_G}{y_G} &=& \binom{-2}{1} \\ \end{array}\)
\(\begin{array}{rcll} \binom{x_H}{y_H} &=& \binom{x_F}{y_F} +\frac12 \cdot \binom{x_E-x_F}{y_E-y_F} - \frac12 \cdot \binom{-(y_E-y_F)}{x_E-x_F} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\frac12 \cdot \binom{2-0}{3-(-3)} - \frac12 \cdot \binom{-(3-(-3))}{2-0} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\frac12 \cdot \binom{2}{6} - \frac12 \cdot \binom{-6}{2} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\binom{\frac12\cdot 2}{\frac12\cdot 6} - \binom{\frac12\cdot (-6)}{\frac12\cdot 2} \\ \binom{x_H}{y_H} &=& \binom{0}{-3} +\binom{1}{3} - \binom{-3}{1} \\ \binom{x_H}{y_H} &=& \binom{0+1-(-3)}{-3+3-1} \\ \binom{x_H}{y_H} &=& \binom{0+1+3}{-3+3-1} \\ \binom{x_H}{y_H} &=& \binom{4}{-1} \\ \end{array}\)
