Questions   
Sort: 
 #1
avatar+26400 
+5

log(2)+16log(16÷15)+12log(25÷24)+7log(81÷80)=1 [prove that math]

 

\(\begin{array}{rcll} \log{(2)}+16\cdot \log{ ( \frac{16}{15} ) } + 12 \cdot \log{ ( \frac{25}{24} ) } +7 \cdot \log{ (\frac{81}{80} ) } &\overset{?}{=} & 1 \\\\ \log{(2)}+16\cdot \log{ ( \frac{2^4}{3\cdot 5} ) } + 12 \cdot \log{ ( \frac{5^2}{2^3\cdot 3} ) } +7 \cdot \log{ (\frac{3^4}{2^4\cdot 5} ) } &\overset{?}{=} & 1 \\ \end{array} \)

 

 

\(\small{ \begin{array}{rcll} \log{(2)} +16\cdot \log{ ( 2^4 ) } - 16\cdot \log{ ( 3 ) }- 16\cdot \log{ ( 5 ) } \\ +12\cdot \log{ ( 5^2 ) } - 12\cdot \log{ ( 2^3 ) }- 12\cdot \log{ ( 3 ) } \\ +7\cdot \log{ ( 3^4 ) } - 7\cdot \log{ ( 2^4 ) }- 7\cdot \log{ ( 5 ) } &\overset{?}{=} & 1 \\ \end{array} } \)

 

\(\small{ \begin{array}{rcll} \log{(2)} +16\cdot 4\cdot \log{ ( 2 ) } - 16\cdot \log{ ( 3 ) }- 16\cdot \log{ ( 5 ) } \\ +12\cdot 2\cdot \log{ ( 5 ) } - 12\cdot 3 \cdot \log{ ( 2 ) }- 12\cdot \log{ ( 3 ) } \\ +7\cdot 4\cdot \log{ ( 3 ) } - 7\cdot 4 \cdot \log{ ( 2) }- 7\cdot \log{ ( 5 ) } &\overset{?}{=} & 1 \\ \end{array} } \)

 

\(\small{ \begin{array}{rcll} \log{(2)} +64\cdot \log{ ( 2 ) } - 16\cdot \log{ ( 3 ) }- 16\cdot \log{ ( 5 ) } \\ +24\cdot \log{ ( 5 ) } - 36 \cdot \log{ ( 2 ) }- 12\cdot \log{ ( 3 ) } \\ +28\cdot \log{ ( 3 ) } - 28 \cdot \log{ ( 2) }- 7\cdot \log{ ( 5 ) } &\overset{?}{=} & 1 \\ \end{array} } \)

 

\(\small{ \begin{array}{rcll} \log{(2)} +64\cdot \log{ ( 2 ) }- 36 \cdot \log{ ( 2 ) }- 28 \cdot \log{ ( 2) }\\ - 16\cdot \log{ ( 3 ) } - 12\cdot \log{ ( 3 ) } +28\cdot \log{ ( 3 ) }\\ - 16\cdot \log{ ( 5 ) } +24\cdot \log{ ( 5 ) } - 7\cdot \log{ ( 5 ) } &\overset{?}{=} & 1 \\\\ \log{(2)} + 0 \log{ ( 3 ) } + 1\cdot \log{ ( 5 ) } &\overset{?}{=} & 1 \\ \log{(2)} + \log{ ( 5 ) } &\overset{?}{=} & 1 \\ \log{(2\cdot 5 )} &\overset{?}{=} & 1 \\ \log{( 10 )} &\overset{?}{=} & 1 \\ \log{( 10^1 )} &\overset{?}{=} & 1 \\\\ \mathbf{ 1 } & \mathbf{ = } & \mathbf{1} \\ \end{array} } \)

 

laugh

Mar 18, 2016
 #1
avatar
0
Mar 18, 2016
 #2
avatar+26400 
+10

log(36÷25)^3+3log(2÷9)-log(2)=2log(16÷125) [prove that math]

 

\(\small{ \begin{array}{rcll} \log{[(\frac{36}{25} )^3]}+3\cdot \log{(\frac{2}{9} )}-\log{(2)} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{[(\frac{36^3}{25^3} )]} + \log{[(\frac{2}{9} )^3 ] }-\log{(2)} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{[(\frac{36^3}{25^3} )]} + \log{[(\frac{2^3}{9^3} ) ] }-\log{(2)} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{36^3}{25^3}\cdot \frac{2^3}{9^3} \cdot \frac12 )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{36^3}{25^3}\cdot \frac{2^2}{9^3})} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ (4\cdot 9)^3}{25^3}\cdot \frac{2^2}{9^3})} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3\cdot 9^3}{25^3}\cdot \frac{2^2}{9^3})} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3 }{25^3}\cdot \frac{2^2}{1})} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3 }{(5^2)^3}\cdot \frac{2^2}{1})} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3 }{(5^2)^3}\cdot 4 )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3 }{(5^3)^2}\cdot 4 )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3 }{(5^3)^2}\cdot 4 )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^3 }{125^2}\cdot 4 )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 4^4 }{125^2} )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ (4^2)^2 }{125^2} )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{(\frac{ 16^2 }{125^2} )} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\ \log{ [ ( \frac{ 16 }{125} )^2 ]} & \overset{?}{=}& 2\cdot \log{(\frac{16}{125} )} \\\\ \mathbf{2\cdot \log{ ( \frac{ 16 }{125} )} } & \mathbf{=} & \mathbf{ 2\cdot \log{(\frac{16}{125} )} } \end{array} }\)

 

laugh

Mar 18, 2016
 #1
avatar+40 
0
Mar 18, 2016

0 Online Users