Questions   
Sort: 
 #1
avatar
+1
Apr 2, 2016
 #5
avatar
0

1=

 

Take the integral:
 integral sqrt(2-x) x^2 dx
For the integrand sqrt(2-x) x^2, substitute u = sqrt(2-x) and  du = -1/(2 sqrt(2-x))  dx:
  =  -2 integral u^2 (2-u^2)^2 du
Expanding the integrand u^2 (2-u^2)^2 gives u^6-4 u^4+4 u^2:
  =  -2 integral (u^6-4 u^4+4 u^2) du
Integrate the sum term by term and factor out constants:
  =  -2 integral u^6  du+8 integral u^4  du-8 integral u^2  du
The integral of u^6 is u^7/7:
  =  -(2 u^7)/7+8 integral u^4  du-8 integral u^2  du
The integral of u^4 is u^5/5:
  =  (8 u^5)/5-(2 u^7)/7-8 integral u^2  du
The integral of u^2 is u^3/3:
  =  -(2 u^7)/7+(8 u^5)/5-(8 u^3)/3+constant
Substitute back for u = sqrt(2-x):
  =  -2/7 (2-x)^(7/2)+8/5 (2-x)^(5/2)-8/3 (2-x)^(3/2)+constant
Which is equal to:
Answer: |  =  -2/105 (2-x)^(3/2) (15 x^2+24 x+32)+constant

 

2-

 

integral x sec^2(x) 2 x dx = 2 (x (-i x+2 log(1+e^(2 i x))+x tan(x))-i Li_2(-e^(2 i x)))+constant

 

3-

 

Take the integral:
 integral x/sqrt(x+5) dx
For the integrand x/sqrt(x+5), substitute u = x+5 and  du =   dx:
  =   integral (u-5)/sqrt(u) du
Expanding the integrand (u-5)/sqrt(u) gives sqrt(u)-5/sqrt(u):
  =   integral (sqrt(u)-5/sqrt(u)) du
Integrate the sum term by term and factor out constants:
  =   integral sqrt(u) du-5 integral 1/sqrt(u) du
The integral of sqrt(u) is (2 u^(3/2))/3:
  =  (2 u^(3/2))/3-5 integral 1/sqrt(u) du
The integral of 1/sqrt(u) is 2 sqrt(u):
  =  (2 u^(3/2))/3-10 sqrt(u)+constant
Substitute back for u = x+5:
  =  2/3 (x+5)^(3/2)-10 sqrt(x+5)+constant
Which is equal to:
Answer: |  =  2/3 (x-10) sqrt(x+5)+constant

Apr 2, 2016
 #1
avatar+2499 
0
Apr 2, 2016

0 Online Users