cosx = cos[180-cosinverse((0.25*cosx)/6.76)] x in rad!!!


The Solution for $$\cos{(x)} = \cos{(180\textcolor[rgb]{1,0,0}{rad}-cos^{-1}{(\;(0.25*\cos{(x)})/6.76})\;)}$$ x in rad is:
\cos{(x)} = \cos{(180\textcolor[rgb]{1,0,0}{rad}-cos^{-1}{(\;(0.25*\cos{(x)})/6.76})\;)}
$$x=\pm cos^{-1}
\left(
\;\frac
{
\sin{ ( 180\;\textcolor[rgb]{1,0,0}{rad} ) }
}
{
\sqrt{
\left( \frac{0.25}{6.76} - \cos{
( 180\;\textcolor[rgb]{1,0,0}{rad} ) }
\right) ^2
+ ( \sin{ (180\;\textcolor[rgb]{1,0,0}{rad}) } )^2
}
}
\;\right)$$
x=\pm cos^{-1}
\left(
\;\frac
{
\sin{ ( 180\;\textcolor[rgb]{1,0,0}{rad} ) }
}
{
\sqrt{
\left( \frac{0.25}{6.76} - \cos{
( 180\;\textcolor[rgb]{1,0,0}{rad} ) }
\right) ^2
+ ( \sin{ (180\;\textcolor[rgb]{1,0,0}{rad}) } )^2
}
}
\;\right)
$$\\x=\pm (2.47103630997\pm 2\pi*k)\\\\
Example:\\
x=-3.81215\\
x=-2.47104\\
x=2.47104\\
x=3.81245\\
\dots$$
\\x=\pm (2.47103630997\pm 2\pi*k)\\\\
Example:\\
x=-3.81215\\
x=-2.47104\\
x=2.47104\\
x=3.81245\\
\dots