Questions   
Sort: 
 #1
avatar+118724 
+5
May 15, 2014
 #9
avatar+118724 
0
May 15, 2014
 #8
avatar+118724 
+11

This is posted on the Latex thread in the sticky notes.

 

$$\begin{array}{rlllr}
( x^3&+4x^2&+x& -6)&:(x-1)=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}\\
\textcolor[rgb]{1,0,0}{{\underline{-(x^3}}&\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}&&&\\
0&+5x^2&+x\\
&\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}&\textcolor[rgb]{0,0,1}{\underline{-5x)}}\\
&0&+6x&-6\\
&&\textcolor[rgb]{0,1,0}{\underline{-(6x}}&\textcolor[rgb]{0,1,0}{\underline{-6)}}\\
&&0&+0
\end{array}$$

 

 

division in latex code:

\begin{array}{rlllr}

( x^3&+4x^2&+x& -6)&:(x-1)=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}\\

\textcolor[rgb]{1,0,0}{{\underline{-(x^3}}&\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}&&&\\

0&+5x^2&+x\\

&\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}&\textcolor[rgb]{0,0,1}{\underline{-5x)}}\\

&0&+6x&-6\\

&&\textcolor[rgb]{0,1,0}{\underline{-(6x}}&\textcolor[rgb]{0,1,0}{\underline{-6)}}\\

&&0&+0

\end{array}

-----------------------

Many Greetings

Heureka (Eureka)

 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 

This is another possibility for long division

 

http://web2.0calc.com/questions/how-do-u-do-92-divide-6-3-in-long-division-nbsp

 

$$\;1\textcolor[rgb]{0,1,0}{4}\\
63|\bar{9}\bar{2}\bar{0} \qquad $63 goes into 92 just once$\\
'\;\;\;63\downarrow \qquad\; 1*63=63\\
'\;\;\;290\_\qquad\quad 92-63=29 \qquad $and bring down the 0$\\
'\;\;\;252\qquad\quad \textcolor[rgb]{0,1,0}{\mbox{63 goes into 290 4 times and 4*63=252}}\\
'\;\;\;\;\bar{3}\bar{8}\qquad \quad 290-252=38 $ The remainder is 36$$$

 

Coding is very messy though

\;1\textcolor[rgb]{0,1,0}{4}\\ 63|\bar{9}\bar{2}\bar{0} \qquad $63 goes into 92 just once$\\ '\;\;\;63\downarrow \qquad\; 1*63=63\\

'\;\;\;290\_\qquad\quad 92-63=29 \qquad $and bring down the 0$\\

'\;\;\;252\qquad\quad \textcolor[rgb]{0,1,0}{\mbox{63 goes into 290 4 times and 4*63=252}}\\ '\;\;\;\;\bar{3}\bar{8}\qquad \quad 290-252=38 $ The remainder is 36$

.
May 15, 2014
 #7
avatar+118724 
+11

Heureko's LaTex

http://web2.0calc.com/questions/what-is-mod  

latex code:

\\\boxed{(a\bmod b)=a-b\lfloor\frac{a}{b}\rfloor}\\
\\
Example: \quad 299\bmod 12=299-12*\lfloor\frac{299}{12}\rfloor\\ 
= 299-12*24=299-288=11

$$\lfloor \dots \rfloor = floor function$$

latex code:

\lfloor \dots \rfloor = floor function

output:

$$\\\boxed{(a\bmod b)=a-b\lfloor\frac{a}{b}\rfloor}\\
\\
Example: \quad 299\bmod 12=299-12*\lfloor\frac{299}{12}\rfloor\\
= 299-12*24=299-288=11

\lfloor \dots \rfloor = floor function

latex code:

\lfloor \dots \rfloor = floor function$$

.
May 15, 2014
 #8
avatar+26400 
+5

1.) See "Vieta"

2.) You find $$x_1=1$$ do:

$$\begin{array}{
rlllr
} (
x^3
&
+4x^2
&
+x
&
-6)
&
:
(x-1)
=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}
\\
\textcolor[rgb]{1,0,0}{{\underline{-(
x^3}}
&
\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}
&
&
&
\\
0
&
+5x^2
&
+x
\\
&
\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}
&
\textcolor[rgb]{0,0,1}{\underline{-5x)}}
\\
&
0
&
+6x
&
-6
\\
&&
\textcolor[rgb]{0,1,0}{\underline{-(6x}}
&
\textcolor[rgb]{0,1,0}{\underline{-6)}}
\\
&&
0
&
+0
\end{array}$$

\begin{array}{
rlllr
} (
x^3
&
+4x^2
&
+x
&
-6)
&
:
(x-1)
=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}
\\
\textcolor[rgb]{1,0,0}{{\underline{-(
x^3}}
&
\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}
&
&
&
\\
0
&
+5x^2
&
+x
\\
&
\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}
&
\textcolor[rgb]{0,0,1}{\underline{-5x)}}
\\
&
0
&
+6x
&
-6
\\
&&
\textcolor[rgb]{0,1,0}{\underline{-(6x}}
&
\textcolor[rgb]{0,1,0}{\underline{-6)}}
\\
&&
0
&
+0
\end{array}

so we have: $$x^3+4x^2+x-6=(x-1)(x^2+5x+6)$$

x^3+4x^2+x-6=(x-1)(x^2+5x+6)

We solve:

$$\\x^2+5x+6=0\\
x^2+5x+(\textcolor[rgb]{1,0,0}{\frac{5}{2}})^2-(\textcolor[rgb]{1,0,0}{\frac{5}{2}})^2+6=0\\
\left( x+\frac{5}{2}\right)^2=\frac{25}{4}-6\\
\left( x+\frac{5}{2}\right)^2=\frac{1}{4}\qquad| \quad \pm\sqrt{}\\
x+\frac{5}{2}=\pm\sqrt{\frac{1}{4}}\\
x_{2,3}=-\frac{5}{2}\pm\frac{1}{2}\\
x_2=-\frac{5}{2}+\frac{1}{2}=-\frac{4}{2}=\underline{-2}\\
x_3=-\frac{5}{2}-\frac{1}{2}=-\frac{6}{2}=\underline{-3}\\$$

\\x^2+5x+6=0\\
x^2+5x+(\textcolor[rgb]{1,0,0}{\frac{5}{2}})^2-(\textcolor[rgb]{1,0,0}{\frac{5}{2}})^2+6=0\\
\left( x+\frac{5}{2}\right)^2=\frac{25}{4}-6\\
\left( x+\frac{5}{2}\right)^2=\frac{1}{4}\qquad| \quad \pm\sqrt{}\\
x+\frac{5}{2}=\pm\sqrt{\frac{1}{4}}\\
x_{2,3}=-\frac{5}{2}\pm\frac{1}{2}\\
x_2=-\frac{5}{2}+\frac{1}{2}=-\frac{4}{2}=\underline{-2}\\
x_3=-\frac{5}{2}-\frac{1}{2}=-\frac{6}{2}=\underline{-3}\\

$$\\x_1=1 \qquad x_2=-2 \qquad x_3=-3\\
\boxed{x^3+4x^2+x-6=(x-1)(x+2)(x+3)}$$

\\x_1=1 \qquad x_2=-2 \qquad x_3=-3\\
\boxed{x^3+4x^2+x-6=(x-1)(x+2)(x+3)}

 
May 15, 2014

2 Online Users

avatar