$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{x}}\right)} = \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{180}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{0.25}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{x}}\right)}}{{\mathtt{6.76}}}}\right)}\right)} \Rightarrow \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{cos}}{\left({\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{180}}}}\right)} = {\mathtt{\,-\,}}{\frac{{\mathtt{25}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{cos}}{\left({\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{x}}}{{\mathtt{180}}}}\right)}}{{\mathtt{676}}}}$$
Umm that doesn't look very helpful.
Okay lets try something else
http://www.wolframalpha.com/input/?i=cos%28x%29%3Dcos%28180-acos%280.25%2F6.76*cos%28x%29%29%29
I'll think about it some more and i am sure others will as well.
This is posted on the Latex thread in the sticky notes.
$$\begin{array}{rlllr}
( x^3&+4x^2&+x& -6)&:(x-1)=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}\\
\textcolor[rgb]{1,0,0}{{\underline{-(x^3}}&\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}&&&\\
0&+5x^2&+x\\
&\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}&\textcolor[rgb]{0,0,1}{\underline{-5x)}}\\
&0&+6x&-6\\
&&\textcolor[rgb]{0,1,0}{\underline{-(6x}}&\textcolor[rgb]{0,1,0}{\underline{-6)}}\\
&&0&+0
\end{array}$$
division in latex code:
\begin{array}{rlllr}
( x^3&+4x^2&+x& -6)&:(x-1)=\textcolor[rgb]{1,0,0}{x^2}\textcolor[rgb]{0,0,1}{+5x}\textcolor[rgb]{0,1,0}{+6}\\
\textcolor[rgb]{1,0,0}{{\underline{-(x^3}}&\textcolor[rgb]{1,0,0}{\underline{-x^2)}}}&&&\\
0&+5x^2&+x\\
&\textcolor[rgb]{0,0,1}{\underline{-(5x^2}}&\textcolor[rgb]{0,0,1}{\underline{-5x)}}\\
&0&+6x&-6\\
&&\textcolor[rgb]{0,1,0}{\underline{-(6x}}&\textcolor[rgb]{0,1,0}{\underline{-6)}}\\
&&0&+0
\end{array}
-----------------------
Many Greetings
Heureka (Eureka)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This is another possibility for long division
http://web2.0calc.com/questions/how-do-u-do-92-divide-6-3-in-long-division-nbsp
$$\;1\textcolor[rgb]{0,1,0}{4}\\
63|\bar{9}\bar{2}\bar{0} \qquad $63 goes into 92 just once$\\
'\;\;\;63\downarrow \qquad\; 1*63=63\\
'\;\;\;290\_\qquad\quad 92-63=29 \qquad $and bring down the 0$\\
'\;\;\;252\qquad\quad \textcolor[rgb]{0,1,0}{\mbox{63 goes into 290 4 times and 4*63=252}}\\
'\;\;\;\;\bar{3}\bar{8}\qquad \quad 290-252=38 $ The remainder is 36$$$
Coding is very messy though
\;1\textcolor[rgb]{0,1,0}{4}\\ 63|\bar{9}\bar{2}\bar{0} \qquad $63 goes into 92 just once$\\ '\;\;\;63\downarrow \qquad\; 1*63=63\\
'\;\;\;290\_\qquad\quad 92-63=29 \qquad $and bring down the 0$\\
'\;\;\;252\qquad\quad \textcolor[rgb]{0,1,0}{\mbox{63 goes into 290 4 times and 4*63=252}}\\ '\;\;\;\;\bar{3}\bar{8}\qquad \quad 290-252=38 $ The remainder is 36$
.Heureko's LaTex
http://web2.0calc.com/questions/what-is-mod
latex code:
\\\boxed{(a\bmod b)=a-b\lfloor\frac{a}{b}\rfloor}\\
\\
Example: \quad 299\bmod 12=299-12*\lfloor\frac{299}{12}\rfloor\\
= 299-12*24=299-288=11
$$\lfloor \dots \rfloor = floor function$$
latex code:
\lfloor \dots \rfloor = floor function
output:
$$\\\boxed{(a\bmod b)=a-b\lfloor\frac{a}{b}\rfloor}\\
\\
Example: \quad 299\bmod 12=299-12*\lfloor\frac{299}{12}\rfloor\\
= 299-12*24=299-288=11
\lfloor \dots \rfloor = floor function
latex code:
\lfloor \dots \rfloor = floor function$$
@@ End of Day Wrap - Thursday 15/5/14 Sydney, Australia Time 20:55
Hi all,
Another good day. Lots of great answers from CPhill, Alan, zegroes and Kitty<3, reinout-g and Heureka. Thank you.
**Reinout-g has posted some more puzzles - He challenges you to solve them! Thanks reinout.
http://web2.0calc.com/questions/logic-s-puzzle#r105849
http://web2.0calc.com/questions/search/?q=white+collar+crime
Here are some other posts that you may find interesting.
**Who has heard of a minim before - not I
http://web2.0calc.com/questions/what-is-the-volume-of-the-pacific
**Difficult factorisation and very impressive LaTex from Heureka
http://web2.0calc.com/questions/f-x-x3-4x2-x-6-which-is-the-factored-form-of-f-x
**Best "non-math" answer of the day :
http://web2.0calc.com/questions/help-asap-i-have-a-question#r106014
That's it for the day.
Thanks everyone,
Melody.
melodymathforum@gmail.com