Questions   
Sort: 
 #2
avatar+26388 
+5

4. Given

\(a \equiv 1 \pmod{7}\),

\(b \equiv 2 \pmod{7}\),

and

\(c \equiv 6 \pmod{7}\),

what is the remainder when

\(a^{81} b^{91} c^{27} \)

is divided by 7?

 

\(\begin{array}{|rclcl|} \hline a-1 &=& 7l \quad &\text{or}& \quad a =7l+1 \\ b-2 &=& 7m \quad &\text{or}& \quad b =7m+2 \\ c-6 &=& 7n \quad &\text{or}& \quad c =7n+6 \\ \hline \end{array}\)

 

\(\begin{array}{|rclcl|} \hline && a^{81} b^{91} c^{27} \pmod 7 \\ &\equiv& (7l+1)^{81}\cdot (7m+2)^{91}\cdot (7n+6)^{27} \pmod 7 \\\\ &\equiv& \left[\binom{81}{0}(7l)^{81}+ \binom{81}{1}(7l)^{80} +\dots + \binom{81}{81} 1^{81} \right] \\ && \cdot \left[\binom{91}{0}(7m)^{91}+ \binom{91}{1}(7m)^{90} +\dots + \binom{91}{91} 2^{91} \right] \\ && \cdot \left[\binom{27}{0}(7n)^{27}+ \binom{27}{1}(7n)^{26} +\dots + \binom{27}{27} 6^{27} \right] \pmod 7 \\\\ &\equiv& \binom{81}{81} 1^{81}\cdot \binom{91}{91} 2^{91} \cdot \binom{27}{27} 6^{27}\pmod 7 \\\\ &\equiv& 1^{81}\cdot 2^{91} \cdot 6^{27}\pmod 7 \\ &\equiv& 1 \cdot 2^{91} \cdot 6^{27}\pmod 7 \\ &\equiv& 2^{91} \cdot 6^{27}\pmod 7 \\ \hline \end{array} \)

 

\(\begin{array}{|lllcl|} \hline \text{Because } gcd(2,7) = 1 \quad \Rightarrow & 2^{\varphi(7)} \equiv 1 \pmod 7 \qquad \varphi(7) = 6\\ & \mathbf{2^{6} \equiv 1 \pmod 7} \\\\ \text{Because } gcd(6,7) = 1 \quad \Rightarrow & 6^{\varphi(7)} \equiv 1 \pmod 7 \qquad \varphi(7) = 6\\ & \mathbf{6^{6} \equiv 1 \pmod 7} \\ \hline \end{array} \)

 

\(\begin{array}{|rclcl|} \hline && a^{81} b^{91} c^{27} \pmod 7 \\ &\equiv& 2^{91} \cdot 6^{27}\pmod 7 \\ &\equiv& 2^{6\cdot 15+1} \cdot 6^{6\cdot 4+3}\pmod 7 \\ &\equiv& 2^{6\cdot 15}\cdot 2 \cdot 6^{6\cdot 4}\cdot 6^3 \pmod 7 \\ &\equiv& (2^6)^{15}\cdot 2 \cdot (6^6)^{4}\cdot 6^3\pmod 7 \qquad \mathbf{2^{6} \equiv 1 \pmod 7}\\ &\equiv& (1)^{15}\cdot 2 \cdot (6^6)^{4}\cdot 6^3\pmod 7 \qquad \mathbf{6^{6} \equiv 1 \pmod 7}\\ &\equiv& (1)^{15}\cdot 2 \cdot (1)^{4}\cdot 6^3\pmod 7 \\ &\equiv& 1 \cdot 2 \cdot 1 \cdot 6^3\pmod 7 \\ &\equiv& 2 \cdot 6^3 \pmod 7 \\ &\equiv& 2 \cdot 216 \pmod 7 \\ &\equiv& 432 \pmod 7 \\ &\equiv& \mathbf{5} \pmod 7 \\ \hline \end{array} \)

 

The remainder is 5

 

laugh

Aug 2, 2016
Aug 1, 2016

6 Online Users

avatar
avatar
avatar