Questions   
Sort: 
 #2
avatar+2 
0
Feb 8, 2017
 #2
avatar+26388 
+20

Two pipes together drain a wastewater holding tank in 6 hours.
If used alone to empty the tank, one takes 2 hours longer than the other.
How long does each take to empty the tank when used alone?

 

\(\begin{array}{|rcll|} \hline \text{Let } q_1 &=& \text{Volumetric flow pipe } 1 \\ \text{Let } q_2 &=& \text{Volumetric flow pipe } 2 \\ \text{Let } V &=& \text{Volume of the tank} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & q_1 \cdot t + q_2 \cdot t &=& V \\ & (q_1 + q_2) \cdot t &=& V \quad & | \quad t = 6\ hours \\ (1) & (q_1 + q_2) \cdot 6 &=& V \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (2) & q_1\cdot t_1 &=& V \\ & t_1 &=& \frac{V}{q_1} \\ \hline & q_2 \cdot t_2 &=& V \quad & | \quad t_2 = t_1 + 2\ hours \\ (3) & q_2 \cdot (t_1 + 2) &=& V \\ & q_2 \cdot (t_1 + 2) &=& V \quad & | \quad t_1 = \frac{V}{q_1} \\ & q_2 \cdot (\frac{V}{q_1} + 2) &=& V \\ & \dots \\ (4) & V &=& \frac{2q_1q_2}{q_1-q_2} \\ \hline \end{array} \)

 

(1) = (4):

\(\begin{array}{|lrcll|} \hline & V = 6\cdot (q_1+q_2) &=& \frac{2q_1q_2}{q_1-q_2} \\ & 6\cdot (q_1+q_2) &=& \frac{2q_1q_2}{q_1-q_2} \quad & | \quad : 2\\ & 3\cdot (q_1+q_2) &=& \frac{q_1q_2}{q_1-q_2} \quad & | \quad \cdot (q_1-q_2) \\ & 3\cdot (q_1+q_2)(q_1-q_2) &=& q_1q_2 \\ & 3\cdot (q_1^2-q_2^2) &=& q_1q_2 \\ & 3q_1^2-3q_2^2-q_1q_2 &=& 0 \\ & 3q_1^2-q_1q_2-3q_2^2 &=& 0 \\\\ & q_1 &=& \frac{q_2\pm \sqrt{q_2^2-4\cdot 3 \cdot (-3q_2^2) } } {2\cdot 3} \\ & q_1 &=& \frac{q_2\pm \sqrt{ q_2^2+36q_2^2 } } {6} \\ & q_1 &=& \frac{q_2\pm \sqrt{ 37q_2^2 } } {6} \\ & q_1 &=& \frac{q_2\pm q_2\sqrt{37} } {6} \\ & q_1 &=& \frac16(1\pm\sqrt{37} ) q_2\\\\ & \mathbf{q_1 = \frac16(1+\sqrt{37} ) q_2 } &\text{ or }& q_1 = \frac16(1-\sqrt{37} )q_2 \\ & & & \text{ no solution } q_1 < 0 ! \\ (5) & \mathbf{\frac{q_1}{q_2} = \frac16(1+\sqrt{37} ) } \\ \hline \end{array}\)

 

(2) = (3):

\(\begin{array}{|lrcll|} \hline & V = q_1\cdot t_1 &=& q_2 \cdot (t_1 + 2) \\ & q_1\cdot t_1 &=& q_2 \cdot (t_1 + 2) \\ (6) & \frac{q_1}{q_2 } &=& \frac{t_1 + 2}{t_1} \\ \hline \end{array} \)

 

(5) = (6):

\(\begin{array}{|rcll|} \hline \frac{q_1}{q_2} = \frac16( 1+\sqrt{37} ) &=& \frac{t_1 + 2}{t_1} \\ \frac16( 1+\sqrt{37} ) &=& \frac{t_1 + 2}{t_1} \\ (1+\sqrt{37} )\cdot t_1 &=& 6\cdot(t_1 + 2) \\ (1+\sqrt{37} )\cdot t_1 &=& 6\cdot t_1 + 12 \\ (1+\sqrt{37} -6)\cdot t_1 &=& 12 \\ (\sqrt{37} - 5)\cdot t_1 &=& 12 \\ t_1 &=& \frac{12}{\sqrt{37} - 5} \\ t_1 &=& \frac{12}{6.08276253030- 5} \\ t_1 &=& \frac{12}{1.08276253030} \\ \mathbf{ t_1 } &\mathbf{=}& \mathbf{11.0827625303\ hours }\\\\ t_2 &=& t_1 + 2\ hours \\ \mathbf{ t_2 } &\mathbf{=}& \mathbf{13.0827625303\ hours }\\ \hline \end{array}\)

 

 

laugh

Feb 8, 2017
 #1
avatar+118659 
+15

Two pipes together drain a wastewater holding tank in 6 hours. If used alone to empty the tank, one takes 2 hours longer than the other. How long does each take to empty the tank when used alone?

 

I always have an awful problem getting my head around questions like this so I made the question easier to see how it would work.

 

I said:

Let the tank be  36L     and let the times to drain be 4 hours and 6 hours respectively

So tank 1 will flow at 36/4 = 9L/hour

and tank 2 will flow at 36/6 = 6L/hour

if they are both draining then the water will flow at   (9+6) L/hour = 15L/hour

so 

\(\frac{15L}{1hour}=\frac{15L*\frac{36}{15}}{1hour*\frac{36}{15}}=\frac{36L}{2.4hours}\)

It will take 2.4 hours to drain the tank if both pipes are emptying it.

 

-----------------

Ok now I can do the same thing for your more difficult problem.

 

Let the tank be V litres

Pipe1 will take t hours to drain it so that is    \(\frac{V}{t}\;\;litres/hour\)

Pipe2 will take (t+2) hours to drain it so that is   \(\frac{V}{t+2}\;\;litres/hour\)

 

So the 2 pipes together will drain

       \(\frac{V}{t}+\frac{V}{t+2}\;\;litres/hour\\ =V[\frac{1}{t}+\frac{1}{t+2}]\;\;litres/hour\\ =V[\frac{(t+2)+t}{t(t+2)}]\;\;litres/hour\\ =\frac{V\left[\frac{2t+2}{t^2+2t}\right]\;\;litres}{1hour}\\ =\frac{V\left[\frac{2t+2}{t^2+2t}\right]\left[\frac{t^2+2t}{2t+2}\right]\;\;litres}{\left[\frac{t^2+2t}{2t+2}\right]hour}\\ =\frac{V\;\;litres}{\left[\frac{t^2+2t}{2t+2}\right]hour}\\\)

 

So it will take    

\(\frac{t^2+2t}{2t+2}\;\;\text{hours to drain the tank}\\~\\ now\\ \frac{t^2+2t}{2t+2}=6\\ t^2+2t=6(2t+2)\\ t^2+2t=12t+12\\ t^2-10t-12=0\\ t=\frac{10\pm\sqrt{100+48}}{2}\\ t=\frac{10\pm\sqrt{148}}{2}\\ t=\frac{10\pm2\sqrt{37}}{2}\\ t=5\pm\sqrt{37}\\ \text{t cannot be negative so }\\t=5+\sqrt{37}\approx 11.08276253\approx 11hours\;\;4\;minutes \;and\;58\;seconds\\\)

 

Which is near enough to 11 hours and 5 minutes

So the pipes will take 11 hours and 5 minutes and 13 hours and 5 min respectively to empty the tank on their own.

 

Since they take 6 hours together that sounds reasonable    laugh

Feb 8, 2017
 #1
avatar
0
Feb 8, 2017
 #1
avatar+12531 
+5
Feb 8, 2017
 #3
avatar+26388 
0

Find the sum of 35 terms of an arithmetic series
of which the first term is a and the fifteenth term is 9a.

 

Let t1 = a

Let t15 = 9a

 

Formula:

\(\begin{array}{|lrcll|} \hline (1) & t_x &=& t_1 + (x-1)\cdot d \\ (2) & t_y &=& t_1 + (y-1)\cdot d \\ (3) & t_z &=& t_1 + (z-1)\cdot d \\ \hline I = (1) - (2) & t_x-t_y &=& d\cdot (x-y) \\ II = (1) - (3) & t_x-t_z &=& d\cdot (x-z) \\ \hline II / I & \frac{t_x-t_z}{t_x-t_y} &=& \frac{d\cdot (x-z)}{d\cdot (x-y)} \\ & \frac{t_x-t_z}{t_x-t_y} &=& \frac{x-z}{x-y} \quad & | \quad \cdot (t_x-t_y) \\ & t_x-t_z &=& (t_x-t_y)\cdot \frac{x-z}{x-y} \\ & t_z &=& t_x-(t_x-t_y)\cdot \frac{x-z}{x-y} \\ & t_z &=& t_x- t_x\cdot (\frac{x-z}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) \\ & t_z &=& t_x\cdot (1-\frac{x-z}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) \\ & t_z &=& t_x\cdot (\frac{x-y-x+z}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) \\ &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ \hline \end{array}\)

 

t35 = ?

\(\begin{array}{|lrclrcl|} \hline x = 1 \quad & t_x &=& t_1 = a \\ y = 15 \quad & t_y &=& t_{15} = 9a \\ z = 35 \quad & t_z &=& t_{35} = \ ? \\ &&&& \mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ &&&& t_{35} & = & a\cdot ( \frac{35-15}{1-15}) + 9a\cdot (\frac{1-35}{1-15}) \\ &&&& t_{35} & = & a\cdot (\frac{20}{-14}) + 9a\cdot (\frac{-34}{-14}) \\ &&&& t_{35} & = & -a\cdot (\frac{10}{7}) + 9a\cdot (\frac{17}{7}) \\ &&&& t_{35} & = & 9a\cdot (\frac{17}{7}) -a\cdot (\frac{10}{7}) \\ &&&& t_{35} & = & a\cdot (\frac{9\cdot 17}{7}) -a\cdot (\frac{10}{7}) \\ &&&& t_{35} & = & a\cdot (\frac{153}{7}) -a\cdot (\frac{10}{7}) \\ &&&& t_{35} & = & a\cdot (\frac{153-10}{7}) \\ &&&& \mathbf{ t_{35} } &\mathbf{=}& \mathbf{ \frac{143}{7}a }\\ \hline \end{array} \)

 

s35 = ?

\(\begin{array}{|rcll|} \hline s_{35} &=& \left(\frac{t_1+t_{35}}{2} \right)\cdot 35 \quad & | \quad t_1 = a \quad t_{35} = \frac{143}{7}a \\ s_{35} &=& \left(\frac{a+\frac{143}{7}a}{2} \right)\cdot 35 \\ s_{35} &=& \left(\frac{1+\frac{143}{7} }{2} \right)\cdot 35 a\\ s_{35} &=& \left( \frac{150}{14} \right)\cdot 35 a\\ s_{35} &=& 150\cdot \frac{5}{2} a\\ s_{35} &=& 75\cdot 5 a\\ \mathbf{ s_{35} } &\mathbf{=}& \mathbf{375 a}\\ \hline \end{array} \)

 

 

laugh

Feb 8, 2017

1 Online Users

avatar