Questions   
Sort: 
 #2
avatar+26400 
+1

The center of a circle is located at (−2, 7) . The radius of the circle is 2.

What is the equation of the circle in general form?

 

A circle can be defined as the locus of all points that satisfy the equation
\((x-h)^2 + (y-k)^2 = r^2 \)  ( Standard Form )
where r is the radius of the circle,
and h,k are the coordinates of its center.

 

The general Form is:
\(x^2+y^2 +ax+by+c = 0\)

 

Standard Form to general Form:

\(\begin{array}{|rcll|} \hline (x-h)^2 + (y-k)^2 &=& r^2 \\ x^2-2xh+h^2+y^2-2yk+k^2 &=& r^2 \\ x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\ \hline \end{array} \)

 

a,b and c ?

\(\begin{array}{|rcll|} \hline x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\\\ \color{red}a &\color{red}=& \color{red}-2h \\\\ \color{red}b &\color{red}=& \color{red}-2k \\\\ \color{red}c &\color{red}=&\color{red}h^2+k^2-r^2\\ \hline \end{array} \)

 

If we have h,k and r, we can calculate a,b and c:

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 +ax+by+c = 0} \\ a = -2h \\ b = -2k \\ c =h^2+k^2-r^2 \\ \hline \end{array}\)

 

\(h=-2\\ k=7\\ r=2\)

\(\begin{array}{|lcll|} \hline a = -2h \\ a = -2\cdot(-2)\\ \mathbf{a = 4} \\\\ b = -2k \\ b = -2(7) \\ \mathbf{a = -14} \\\\ c =h^2+k^2-r^2 \\ c =(-2)^2+7^2-2^2 \\ c =4+49-4 \\ \mathbf{c =49} \\\\ x^2+y^2 +ax+by+c = 0 \\ \mathbf{x^2+y^2 +4x-14y+49 =0} \\ \hline \end{array} \)

 

The equation of the circle in general form is: \(x^2+y^2 +4x-14y+49 =0\)

 

laugh

May 16, 2017
 #2
avatar+26400 
+2

The general form of the equation of a circle is x2+y2−4x−8y−5=0.

What are the coordinates of the center of the circle?

 

A circle can be defined as the locus of all points that satisfy the equation

\((x-h)^2 + (y-k)^2 = r^2\)  ( Standard Form )

where r is the radius of the circle,
and h,k are the coordinates of its center.

 

The general Form is:

\(x^2+y^2 +ax+by+c = 0\)

 

Standard Form to general Form:

\(\begin{array}{|rcll|} \hline (x-h)^2 + (y-k)^2 &=& r^2 \\ x^2-2xh+h^2+y^2-2yk+k^2 &=& r^2 \\ x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\ \hline \end{array} \)

 

h,k and r ?

\(\begin{array}{|rcll|} \hline x^2+y^2+x\cdot\underbrace{(-2h)}_{=a}+y\cdot\underbrace{(-2k)}_{=b}+\underbrace{h^2+k^2-r^2}_{=c} &=& 0 \\\\ a &=&-2h\\ \color{red}h &\color{red}=& \color{red}-\frac{a}{2} \\\\ b &=&-2k\\ \color{red}k &\color{red}=& \color{red}-\frac{b}{2} \\\\ c &=&h^2+k^2-r^2\\ c &=&(-\frac{a}{2})^2+(-\frac{b}{2})^2-r^2\\ c &=& \frac{a^2+b^2}{4} -r^2\\ r^2 &=& \frac{a^2+b^2}{4} -c \\ \color{red}r &\color{red}=& \color{red} \sqrt{\frac{a^2+b^2}{4} -c} \\ \hline \end{array} \)

 

If we have a,b and c, we can calculate h,k and r:

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 +ax+by+c = 0} \\ h = -\dfrac{a}{2} \\ k = -\dfrac{b}{2} \\ r = \sqrt{\dfrac{a^2+b^2}{4} -c} \\ \hline \end{array} \)


\(a=-4\\ b=-8\\ c=-5\)

\(\begin{array}{|lcll|} \hline \mathbf{x^2+y^2 -4x-8y-5 = 0} \\\\ h = -\dfrac{-4}{2} \\ \mathbf{h = 2} \\\\ k = -\dfrac{-8}{2} \\ \mathbf{k = 4} \\\\ r = \sqrt{\dfrac{(-4)^2+(-8)^2}{4} -(-5)} \\ r = \sqrt{\dfrac{16+64}{4} +5} \\ r = \sqrt{20 +5} \\ r = \sqrt{25} \\ \mathbf{r = 5} \\ \hline \end{array}\)

 

The coordinates of the center of the circle is (2,4) and the radius is 5

 

laugh

May 16, 2017
 #1
avatar+118723 
+1
May 16, 2017

0 Online Users