1. A3(A3+A2)-1+A2(A2+A)-1+2(A3+A2)-1A4
Question see also:
https://web2.0calc.com/questions/matrix-problem-simplify-as-little-as-possible-each
1.
\(\begin{array}{|rcll|} \hline &&\mathbf{ A^3(A^3+A^2)^{-1} } \\ &=& A^3[ AA^2+IA^2 ]^{-1} \quad & | \quad \text{Identity matrix I } \\ &=& A^3[ (A+I)A^2 ]^{-1} \quad & | \quad \text{Formula:} \quad (AB)^{-1} = B^{-1}A^{-1} \\ &=& A^3[ (A^2)^{-1}(A+I)^{-1} ] \quad & | \quad (A^2)^{-1} = (AA)^{-1} = A^{-1}A^{-1} = (A^{-1})^2 \\ &=& A^3(A^{-1})^2(A+I)^{-1} \\ &=& AA^2(A^{-1})^2(A+I)^{-1} \quad & | \quad A^2(A^{-1})^2 = I \\ &=& AI(A+I)^{-1} \quad & | \quad AI = A \\ &\mathbf{=}& \mathbf{ A(A+I)^{-1} } \\ \hline \end{array}\)
2.
\(\begin{array}{|rcll|} \hline &&\mathbf{ A^2(A^2+A)^{-1} } \\ &=& A^2(AA+IA)^{-1} \quad & | \quad \text{Identity matrix I } \\ &=& A^2[(A+I)A]^{-1} \quad & | \quad \text{Formula:} \quad (AB)^{-1} = B^{-1}A^{-1} \\ &=& A^2[A^{-1}(A+I)^{-1} ] \\ &=& AAA^{-1}(A+I)^{-1} \quad & | \quad AA^{-1} = I \\ &=& AI(A+I)^{-1} \quad & | \quad AI = A \\ &\mathbf{=}& \mathbf{ A(A+I)^{-1} } \\ \hline \end{array}\)
3.
\(\begin{array}{|rcll|} \hline &&\mathbf{ 2(A^3+A^2)^{-1}A^4 }\\ &=& 2[ A^2A+A^2I ]^{-1}A^4 \quad & | \quad \text{Identity matrix I } \\ &=& 2[ A^2(A+I) ]^{-1}A^4 \quad & | \quad \text{Formula:} \quad (AB)^{-1} = B^{-1}A^{-1} \\ &=& 2[ (A+I)^{-1}(A^2)^{-1} ] A^4 \quad & | \quad (A^2)^{-1} = (AA)^{-1} = A^{-1}A^{-1} = (A^{-1})^2 \\ &=& 2(A+I)^{-1}(A^{-1})^2 A^4 \\ &=& 2(A+I)^{-1}(A^{-1})^2 A^2A^2 \quad & | \quad (A^{-1})^2 A^2 = I \\ &=& 2(A+I)^{-1}IA^2 \quad & | \quad IA^2 = A^2 \\ &\mathbf{=}& \mathbf{ 2(A+I)^{-1}A^2 } \\ \hline \end{array}\)
summary
\(\begin{array}{|rcll|} \hline && A^3(A^3+A^2)^{-1}+A^2(A^2+A)^{-1}+2(A^3+A^2)^{-1}A^4 \\ &=& \mathbf{ A(A+I)^{-1} } + \mathbf{ A(A+I)^{-1} } + \mathbf{ 2(A+I)^{-1}A^2 } \\ &=& 2A(A+I)^{-1} + 2(A+I)^{-1}A^2 \\ &=& 2A(A+I)^{-1}I + 2(A+I)^{-1}A^2 \quad & | \quad I = A^{-1}A \\ &=& 2A(A+I)^{-1}A^{-1}A + 2(A+I)^{-1}A^2 \\ &=& [A(A+I)^{-1}A^{-1} + (A+I)^{-1}A]\ 2A \quad & | \quad A(A+I)^{-1} = [(A+I)A^{-1} ]^{-1} \\ &=& \{ [(A+I)A^{-1} ]^{-1} A^{-1} + (A+I)^{-1}A \} \ 2A \quad & | \quad (A+I)^{-1}A = [A^{-1}(A+I)]^{-1} \\ &=& \{ [(A+I)A^{-1} ]^{-1} A^{-1} + [A^{-1}(A+I)]^{-1} \} \ 2A \\ &=& [ (AA^{-1}+IA^{-1})^{-1} A^{-1} + (A^{-1}A+A^{-1}I)^{-1} ] \ 2A \quad & | \quad AA^{-1} = A^{-1}A = I \qquad IA^{-1} = A^{-1}I = A^{-1} \\ &=& [ (I+A^{-1})^{-1} A^{-1} + (I+A^{-1})^{-1} ] \ 2A \\ &=& [ (I+A^{-1})^{-1} (A^{-1} + I ) ] \ 2A \\ &=& [ (I+A^{-1})^{-1} (I+A^{-1} ) ] \ 2A \quad & | \quad (I+A^{-1})^{-1} (I+A^{-1} ) = I \\ &=& I 2A \\ &\mathbf{=}& \mathbf{ 2A } \\ \hline \end{array}\)
1. A3(A3+A2)-1+A2(A2+A)-1+2(A3+A2)-1A4
Question see also:
http://web2.0calc.com/questions/matrix-problem-simplify-as-little-as-possible-each_1
\(\begin{array}{|rcll|} \hline && A^3(A^3+A^2)^{-1}+A^2(A^2+A)^{-1}+2(A^3+A^2)^{-1}A^4 = \ ?\\ \hline \end{array}\)
1.
\(\begin{array}{|rcll|} \hline &&\mathbf{ A^3(A^3+A^2)^{-1} } \\ &=& A^3[ AA^2+IA^2 ]^{-1} \quad & | \quad \text{Identity matrix I }\\ &=& A^3[ (A+I)A^2 ]^{-1} \quad & | \quad \text{Formula:} \quad (AB)^{-1} = B^{-1}A^{-1}\\ &=& A^3[ (A^2)^{-1}(A+I)^{-1} ] \quad & | \quad (A^2)^{-1} = (AA)^{-1} = A^{-1}A^{-1} = (A^{-1})^2 \\ &=& A^3(A^{-1})^2(A+I)^{-1} \quad & | \quad \\ &=& AA^2(A^{-1})^2(A+I)^{-1} \quad & | \quad A^2(A^{-1})^2 = I \\ &=& AI(A+I)^{-1} \quad & | \quad AI = A \\ &\mathbf{=}& \mathbf{ A(A+I)^{-1} } \\ \hline \end{array}\)
2.
\(\begin{array}{|rcll|} \hline &&\mathbf{ A^2(A^2+A)^{-1} } \\ &=& A^2(AA+IA)^{-1} \quad & | \quad \text{Identity matrix I } \\ &=& A^2[(A+I)A]^{-1} \quad & | \quad \text{Formula:} \quad (AB)^{-1} = B^{-1}A^{-1} \\ &=& A^2[A^{-1}(A+I)^{-1} ] \\ &=& AAA^{-1}(A+I)^{-1} \quad & | \quad AA^{-1} = I \\ &=& AI(A+I)^{-1} \quad & | \quad AI = A \\ &\mathbf{=}& \mathbf{ A(A+I)^{-1} } \\ \hline \end{array} \)
3.
\(\begin{array}{|rcll|} \hline &&\mathbf{ 2(A^3+A^2)^{-1}A^4 }\\ &=& 2[ A^2A+A^2I ]^{-1}A^4 \quad & | \quad \text{Identity matrix I } \\ &=& 2[ A^2(A+I) ]^{-1}A^4 \quad & | \quad \text{Formula:} \quad (AB)^{-1} = B^{-1}A^{-1} \\ &=& 2[ (A+I)^{-1}(A^2)^{-1} ] A^4 \quad & | \quad (A^2)^{-1} = (AA)^{-1} = A^{-1}A^{-1} = (A^{-1})^2 \\ &=& 2(A+I)^{-1}(A^{-1})^2 A^4 \\ &=& 2(A+I)^{-1}(A^{-1})^2 A^2A^2 \quad & | \quad (A^{-1})^2 A^2 = I \\ &=& 2(A+I)^{-1}IA^2 \quad & | \quad IA^2 = A^2 \\ &\mathbf{=}& \mathbf{ 2(A+I)^{-1}A^2 } \\ \hline \end{array}\)
summary
\(\begin{array}{|rcll|} \hline && A^3(A^3+A^2)^{-1}+A^2(A^2+A)^{-1}+2(A^3+A^2)^{-1}A^4 \\ &=& \mathbf{ A(A+I)^{-1} } + \mathbf{ A(A+I)^{-1} } + \mathbf{ 2(A+I)^{-1}A^2 } \\ &=& 2A(A+I)^{-1} + 2(A+I)^{-1}A^2 \\ &=& 2A(A+I)^{-1}I + 2(A+I)^{-1}A^2 \quad & | \quad I = A^{-1}A \\ &=& 2A(A+I)^{-1}A^{-1}A + 2(A+I)^{-1}A^2 \\ &=& [A(A+I)^{-1}A^{-1} + (A+I)^{-1}A]\ 2A \quad & | \quad A(A+I)^{-1} = [(A+I)A^{-1} ]^{-1} \\ &=& \{ [(A+I)A^{-1} ]^{-1} A^{-1} + (A+I)^{-1}A \} \ 2A \quad & | \quad (A+I)^{-1}A = [A^{-1}(A+I)]^{-1} \\ &=& \{ [(A+I)A^{-1} ]^{-1} A^{-1} + [A^{-1}(A+I)]^{-1} \} \ 2A \\ &=& [ (AA^{-1}+IA^{-1})^{-1} A^{-1} + (A^{-1}A+A^{-1}I)^{-1} ] \ 2A \quad & | \quad AA^{-1} = A^{-1}A = I \qquad IA^{-1} = A^{-1}I = A^{-1} \\ &=& [ (I+A^{-1})^{-1} A^{-1} + (I+A^{-1})^{-1} ] \ 2A \\ &=& [ (I+A^{-1})^{-1} (A^{-1} + I ) ] \ 2A \\ &=& [ (I+A^{-1})^{-1} (I+A^{-1} ) ] \ 2A \quad & | \quad (I+A^{-1})^{-1} (I+A^{-1} ) = I \\ &=& I 2A \\ &\mathbf{=}& \mathbf{ 2A } \\ \hline \end{array} \)
Here's how to do it using substitution. There might be a quicker way though....
The problem tells us...
y - 2x = 5 Add 2x to both sides of this equation.
y = 5 + 2x
The problem tells us...
x2 + y2 = 25 And since y = 5 + 2x , we can replace y with 5 + 2x .
x2 + (5 + 2x)2 = 25
x2 + (5 + 2x)(5 + 2x) = 25 Multiply out the parenthesees.
x2 + (5)(5) + (5)(2x) + (2x)(5) + (2x)(2x) = 25
x2 + 25 + 10x + 10x + 4x2 = 25 Combine like terms.
5x2 + 25 + 20x = 25 Subtract 25 from both sides of the equation.
5x2 + 20x = 0 Factor out an x from both terms.
x(5x + 20) = 0 Set each factor equal to 0 and solve for x .
x = 0 or 5x + 20 = 0 Subtract 20 from both sides.
5x = -20 Divide both sides by 5 .
x = -4
Now plug these values for x into the second equation given. (The first one will give you two answers for y , but only one answer for y works in the second equation.)
y - 2x = 5 Plug in 0 for x . y - 2(0) = 5 y - 0 = 5 y = 5 | y - 2x = 5 Plug in -4 for x . y - 2(-4) = 5 y - -8 = 5 y + 8 = 5 Subtract 8 from both sides. | |
y = -3 |
So the two solutions are:
x = 0, y = 5 and x = -4, y = -3