Questions   
Sort: 
 #1
avatar+130511 
+5

 

 

Even though Michaelcai has the answer, it might be instructive to see what it is.....

 

Let the base of the triangle be AB  and let AD and BE intersect at right angles at F

 

 AF and FB  will be the legs right triangle AFB with AF = (2/3)AD and FB   = (2/3)(BE)

And AB will form the hypotenuse of AFB  and will  = sqrt [ (2/3)AD^2 + (2/3)BE^2 ] =

sqrt [ 10^2 + (40/3)^2 ] = 50/3

 

And  BD  will form a hypotenuse of triangle BFD  with BF = (2/3)BE  and FD  = (1/3)AD

And since D is a median on BC, BC  = 2BD =   2 sqrt [ (40/3)^2 + (5)^2 ] = 2 * 5 sqrt [ 73 ] / 3 =

sqrt (7300)/3

 

And AE will form a hypotenuse of triangle AFE  with AF  =  (2/3)AD and FE = (1/3)(BE)

And since E is a median  on  AC, AC = 2*sqrt [ 10^2 + (20/3)^2 ] = 2 * 10sqrt (13) / 3  =

sqrt(5200)/3

 

Now....since we know all the sides, we could use Heron's Formula to find the area, but all those roots would make this messy...!!!

 

Instead...lets use the Law of Cosines to find apex angle ACB....so we have that

 

AB^2  = BC^2 + AC^2  - 2 (BC)(AC)cos ACB

 

[50/3]^2  = 7300/9 + 5200/9  - 2 (sqrt(7300)*sqrt(5200)/9 * cos ACB

 

[ 2500 - 7300 - 5200] /9  =  -2 (sqrt(7300) *sqrt(5200) /9 * cos ACB

 

-10000  = -2 [ sqrt(7300)*sqrt (5200) ] * cosACB

 

arccos  [ 5000  /  [ sqrt(7300)*sqrt(5200] ] = ACB  ≈ 35.75°

 

So....the area of ABC  =  (1/2)(AC)(BC) sinACB  =

(1/2)sqrt(5200)/3 * sqrt (7300)/3 sin (35.75)   =  200 units^2

 

Here's a pic :

 

BTW....we can confirm that the answer is correct because C  = ( 4/3, 24)

 

So...the height of ABC  = 24 and the base  = 50/3

 

So.....the area  = (1/2) (24) (50/3)  = 12 * 50 / 3  = 600 / 3  = 200 units^2

cool cool cool

Aug 25, 2017
 #1
avatar+1084 
+2
Aug 25, 2017
 #2
avatar+2446 
+1

I can confirm that this answer is correct here. I'm not used to the coding world, so I just used this click-and-drag environment to aid my illiteracy. 

 

To run the mini-program, click the green flag above the head of the cat. Don't blink because it will run in an instant! I have edited the program such that it is generalized for any multiple (under 10), the number you want to detect (also must be under 10) and how many of that number you want to detect (must be under a million). Have fun!

Aug 25, 2017
 #2
avatar+26400 
+2

If A and B working together can finish a task in 1 1/2 hours,
and if A and C working together can finish the same task in 1 2/3 hours,
and if A, B, and C working together can finish the same task in 1 hour,
how long would it take for B and C working together to finish the same task?

 

Let W = Work

 

\(\begin{array}{|rcll|} \hline \frac{W}{A} &+& \frac{W}{B} && &=& \frac{W}{1\frac12\ h} \quad & | \quad : W \\ \frac{W}{A} & & &+& \frac{W}{C} &=& \frac{W}{1\frac23\ h} \quad & | \quad : W \\ \frac{W}{A} &+& \frac{W}{B} &+& \frac{W}{C} &=& \frac{W}{1\ h} \quad & | \quad : W \\ & & \frac{W}{B} &+& \frac{W}{C} &=& \frac{W}{x} \quad & | \quad : W \\\\ \frac{1}{A} &+& \frac{1}{B} && &=& \frac{1}{1+\frac12} & (1) \\ \frac{1}{A} & & &+& \frac{1}{C} &=& \frac{1}{1+\frac23} & (2) \\ \frac{1}{A} &+& \frac{1}{B} &+& \frac{1}{C} &=& \frac{1}{1} & (3) \\ & & \frac{1}{B} &+& \frac{1}{C} &=& \frac{1}{x} & (4) \\ \hline \end{array} \)

 

\(\frac{1}{A} =\ ?\)

\(\small{ \begin{array}{|lrcll|} \hline (1)+(2)-(3): \\\\ & (\frac{1}{A}+\frac{1}{B}) + (\frac{1}{A}+\frac{1}{C})-(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}) &=& \frac{1}{1+\frac12} + \frac{1}{1+\frac23} - \frac{1}{1} \\ & \frac{1}{A}+\frac{1}{B} + \frac{1}{A}+\frac{1}{C}-\frac{1}{A}-\frac{1}{B}-\frac{1}{C} &=& \frac{1}{1+\frac12} + \frac{1}{1+\frac23} - \frac{1}{1} \\ & \frac{1}{A} &=& \frac{1}{1+\frac12} + \frac{1}{1+\frac23} - \frac{1}{1} \\ & \frac{1}{A} &=& \frac{1}{\frac32} + \frac{1}{\frac53} - 1 \\ & \frac{1}{A} &=& \frac23 + \frac{3}{5} - 1 \\ & \frac{1}{A} &=& \frac{10+9}{15} - 1 \\ & \frac{1}{A} &=& \frac{19}{15} - \frac{15}{15} \\ & \mathbf{\frac{1}{A}} & \mathbf{=} & \mathbf{\frac{4}{15}} \\ \hline \end{array} }\)

 

\(x =\ ?\)

\(\begin{array}{|lrcll|} \hline (3) & \frac{1}{A} + \frac{1}{B} + \frac{1}{C} &=& \frac{1}{1} \\ & \frac{1}{B} + \frac{1}{C} &=& \frac{1}{1} - \frac{1}{A} \quad & | \quad \frac{1}{B} + \frac{1}{C} = \frac{1}{x} \\ & \frac{1}{x} &=& \frac{1}{1} - \frac{1}{A} \\ & \frac{1}{x} &=& \frac{1}{1} - \mathbf{\frac{4}{15}} \\ & \frac{1}{x} &=& 1 - \mathbf{\frac{4}{15}} \\ & \frac{1}{x} &=& \frac{15}{15} - \mathbf{\frac{4}{15}} \\ & \frac{1}{x} &=& \frac{15-4}{15} \\ & \frac{1}{x} &=& \frac{11}{15} \\ & x &=& \frac{15}{11} \\ & \mathbf{x} & \mathbf{=}& \mathbf{1\frac{4}{11}\ h} \\ \hline \end{array} \)

 

It would take for B and C working together to finish the same task \(\mathbf{1\frac{4}{11}\ h}\)

 

laugh

Aug 25, 2017
 #2
avatar+118723 
0
Aug 25, 2017

0 Online Users